Универсальное автомобильное зарядное устройство. Стабилизатор зарядного тока автомобильного аккумулятора


Зарядное устройство с токовой стабилизацией

Зарядное устройство со стабилизатором тока

      В этой статье поговорим еще об одном зарядном устройстве для автомобиля. Заряжать будем аккумуляторы стабильным током. Схема зарядного изображена на рисунке 1.

      В качестве сетевого трансформатора в схеме применен перемотанный трансформатор от лампового телевизора ТС-180, но подойдут и ТС-180-2 и ТС-180-2В. Для перемотки трансформатора сначала его аккуратно разбираем, не забыв при этом заметить какими сторонами был склеен сердечник, путать положение U-образных частей сердечника нельзя. Затем сматываются все вторичные обмотки. Экранирующую обмотку, если будете пользоваться зарядным только дома, можно оставить. Если же предполагается использование устройства и в других условиях, то экранирующая обмотка снимается. Снимается так же и верхняя изоляция первичной обмотки. После этого катушки пропитываются бакелитовым лаком. Конечно пропитка на производстве происходит в вакуумной камере, если таких возможностей нет, то пропитаем горячим способом – в горячий лак, разогретый на водяной бане, бросаем катушки и ждем с часик, пока они не пропитаются лаком. Потом даем лишнему лаку стечь и ставим катушки в газовую духовку с температурой порядка 100… 120˚С. В крайнем случае обмотку катушек можно пропитать парафином. После этого восстанавливаем изоляцию первичной обмотки той же бумагой, но тоже пропитанной лаком. Далее мотаем на катушки по… сейчас посчитаем. Для уменьшения тока холостого хода, а он явно возрастет, так как необходимой ферропасты для склеивания витых, разрезных сердечников у нас нет, будем использовать все витки обмоток катушек. И так. Число витков первичной обмотки (см. таблицу) равно 375+58+375+58 = 866витков. Количество витков на один вольт равно 866витков делим на 220 вольт получаем 3,936 ≈ 4витка на вольт.

     Вычисляем количество витков вторичной обмотки. Зададимся напряжением вторичной обмотки в 14 вольт, что даст нам на выходе выпрямителя с конденсаторами фильтра напряжение 14•√2 = 19,74 ≈ 20вольт. Вообще, чем меньше это напряжение, тем меньшая бесполезная мощность в виде тепла будет выделяться на транзисторах схемы. И так, 14 вольт умножаем на 4витка на вольт, получаем 56 витков вторичной обмотки. Теперь зададимся током вторичной обмотки. Иногда требуется быстрехонько подзарядить аккумулятор, а значит требуется увеличить на некоторое время зарядный ток до предела. Зная габаритную мощность трансформатора – 180Вт и напряжение вторичную обмотки, найдем максимальный ток 180/14 ≈ 12,86А. Максимальный ток коллектора транзистора КТ819 – 15А. Максимальная мощность по справочнику данного транзистора в металлическом корпусе равна 100Вт. Значит при токе12А и мощности 100Вт падение напряжения на транзисторе не может превышать… 100/12 ≈ 8,3 вольта и это при условии, что температура кристалла транзистора не превышает 25˚С. Значит нужен вентилятор, так как транзистор будет работать на пределе своих возможностей. Выбираем ток равный 12А при условии, что в каждом плече выпрямителя уже будет стоять по два диода по 10А. По формуле:

           0,7 умножаем на 3,46, получаем диаметр провода ?2,4мм.

     Можно уменьшить ток до 10А и применить провод диаметром 2мм. Для облегчения теплового режима трансформатора вторичную обмотку можно не закрывать изоляцией, а просто покрыть дополнительно еще слоем бакелитового лака.

     Диоды КД213 устанавливаются на пластинчатые радиаторы 100×100х3мм из алюминия. Их можно установить непосредственно на металлический корпус зарядного через слюдяные прокладки с использованием термопасты. Вместо 213- х можно применить Д214А, Д215А, Д242А, но лучше всего подходят диоды КД2997 с любой буквой, типовое значение прямого падения напряжения у которых равно 0,85В, значит при токе заряда 12А на них выделится в виде тепла 0,85•12 = 10Вт. Максимальный выпрямленный постоянный ток этих диодов равен 30А, да и стоят они не дорого. Микросхема LM358N может работать с напряжениями входного сигнала близкими к нулю, отечественных аналогов я не встречал. Транзисторы VT1 и VT2 можно применить с любыми буквами. В качестве шунта применена полоска из луженой жести. Размеры моей полоски вырезанной из консервной банки (смотрим здесь)– 180×10х0,2мм. При указанных на схеме номиналах резисторов R1,2,5 ток регулируется в пределах примерно от 3 до 8А. Чем меньше номинал резистора R2, тем больше ток стабилизации устройства. Как рассчитать добавочное сопротивление для вольтметра прочитайте здесь.

Об амперметре. У меня, полоска вырезанная по указанным выше размерам, совершенно случайно имеет сопротивление 0,0125Ом. Значит при прохождении через ее тока в 10А, на ней упадет U=I•R = 10•0,0125=0,125В = 125млВ. В моем случае примененная измерительная головка имеет сопротивление 1200 Ом при температуре 25˚С.

Лирическое отступление. Многие радиолюбители, основательно подгоняя шунты для своих амперметров, почему то никогда не обращают внимание на температурную зависимость всех элементов собираемых ими схем. Разговаривать на эту тему можно до бесконечности, я вам приведу лишь небольшой пример. Вот активное сопротивление рамки моей измерительной головки при разных температурах. И для каких условий рассчитывать шунт?

     Это означает, что ток выставленный в домашних условиях, не будет соответствовать току выставленном по амперметру в холодном гараже зимой. Если вам это по барабану, то сделайте просто переключатель на 5,5А и 10… 12А и ни каких приборов. И не бойся, как бы их не разбить, это еще один большой плюс зарядного устройства со стабилизацией тока заряда.

     И так, дальше. При сопротивлении рамки равном 1200Ом и токе полного отклонения стрелки прибора 100мкА нам нужно подать на головку напряжение 1200•0,0001=0,12В = 120млВ, что меньше, чем падение напряжения на сопротивлении шунта при токе 10А. Поэтому последовательно измерительной головке поставьте дополнительный резистор, лучше подстроечный, что бы не мучиться с подборкой.

     Монтаж стабилизатора выполнен на печатной плате (см. фото 3). Максимальный ток заряда для себя я ограничил шестью амперами, поэтому при токе стабилизации 6А и падении напряжения на мощном транзисторе 5В, выделяемая мощность при этом равна 30Вт, и обдуве вентилятором от компьютера, данный радиатор нагревается до температуры 60 градусов. С вентилятором это много, необходим более эффективный радиатор. Примерно определить необходимую площадь радиатора можно по диаграмме. Мой вам всем совет — ставьте радиаторы рассчитанные для работы ПП приборов без куллеров, пусть лучше размеры прибора увеличатся, но при остановке этого куллера, ни чего не сгорит.

     При анализе выходного напряжения осциллограмма его была сильно зашумлена, что говорит о нестабильности работы схемы т.е. схема подвозбуждалась. Пришлось дополнить схему конденсатором С5, что обеспечило стабильность работы устройства. Да, еще, для того, что бы уменьшить нагрузку на КТ819, я уменьшил напряжение на выходе выпрямителя до 18В (18/1,41 = 12,8В т.е. напряжение вторичной обмотки у моего трансформатора равно 12,8В). Скачать рисунок печатной платы. До свидания. К.В.Ю.

Download “Зарядное устройство с токовой стабилизацией” Zaryd_stab_tok.rar – Downloaded 1375 times – 16 KB

Дополнение. Аналог LM358 — КР1040УД1
Обсудить эту статью на - форуме "Радиоэлектроника, вопросы и ответы".

Просмотров:76 349

www.kondratev-v.ru

Регулируемый стабилизатор напряжения для зарядного устройства

Зарядное устройство для автомобильных аккумуляторов — незаменимая вещь, которая должна иметься у каждого автолюбителя, не зависимо от того, на сколько аккумулятор хорош, поскольку подводить он может в самую неудобную минуту.

Конструкции многочисленных зарядных устройств мы неоднократно рассматривали на страницах сайта. Зарядное устройство по идее ничто иное как блок питания со стабилизацией тока и напряжения. Работает просто — мы знаем, что напряжение заряженного автомобильного аккумулятора около 14-14,4 Вольт, на зарядном устройстве нужно выставить именно это напряжение, дальше выставить желаемый ток заряда, в случае кислотных стартерных АКБ это десятая часть емкости аккумулятора, например — аккумулятор 60 А/ч, заряжаем его током 6 Ампер.

Регулируемый стабилизатор напряжения для зарядного устройства

В итоге по мере заряда аккумулятора ток будет падать и со временем примет нулевое значение — как только аккумулятор заряжен. Такая система используется во всех зарядных устройствах, процесс заряда не нужно постоянно контролировать, поскольку все выходные параметры зарядного устройства стабильны и не зависят от перепадов сетевого напряжения.

Исходя из того становиться ясно, что для постройки зарядного устройства нужно иметь три узла.

1) Понижающий трансформатор либо импульсный источник питания плюс выпрямитель2) Стабилизатор тока3) Стабилизатор напряжения

С помощью последнего задается порог напряжения, до которого будет заряжаться аккумулятор и сегодня мы поговорим именно о стабилизаторе напряжения.

Система прсота до безобразия, всего 2 активных компонентов, минимальные затраты, ну а сборка займет не более 10 минут при наличии всех компонентов.

Что мы имеем . полевой транзистор в качестве силового элемента, регулируемый стабилитрон, который задает напряжение стабилизации, это напряжение можно выставить вручную, с помощью переменного (а лучше подстроечного, многооборотного) резистора 3,3кОм. На вход стабилизатора можно подавать напряжение до 50 Вольт, на выходе уже получаем стабильное напряжение нужного номинала.

Минимальное возможное напряжение 3Вольт (зависит от полевого транзистора) дело в том, что для того, чтобы полевой транзистор открылся на его затворе нужно иметь напряжение выше 3-х вольт (в некоторых случаях и больше) кроме полевых транзисторов, которые предназначены для работы в цепях с логическим уровнем управления.

Стабилизатор может коммутировать токи до 10 Ампер в зависимости от условий, в частности от типа полевого транзистора, от наличия радиатора и активного охлаждения.

Регулируемый стабилитрон TL431 популярная штука и встречается в любом компьютерном блоке питания, на нем построен контроль выходного напряжения, стоит рядом с оптопарой.

Разобрал одно из своих зарядных устройств, чтобы показать как выглядит стабилизатор, за качество монтажа строго судить не нужно, зарядник 2 года работает у друга без нареканий, делал его на скорую руку  особо не заморачивался.

И ещё хочу отметить один момент, если вы решили поменять масло в своём автомобиле, то хочу порекомендовать отличный торговый дом «Маслёнка», который занимается именно в этом направлении. Заходите и выбирайте индустриальное масло, здесь нет подделок…

Похожие статьи:

xn----7sbgjfsnhxbk7a.xn--p1ai

Простое зарядное устройство — стабилизатор тока из подручных материалов.

Недавно возникла у меня необходимость собрать по-быстрому зарядное устройство для автомобильного аккумулятора с зарядным током до порядка 3-4-х ампер. На всякие премудрости времени, да и желания, особо не было. Поэтому из закромов всплыла старая, но проверенная временем схема стабилизатора зарядного тока. Дискуссию о пользе — вреде заряда аккумулятора стабильным током оставим за пределами этого поста. Скажу только, что схема простая, надёжная, проверенная временем. А больше от неё ничего и не требуется.

Схема зарядного устройства следующая (для увеличения — клик на картинке):

Микросхема (К553УД2) установлена древняя, но так как она в наличии как раз имелась, а тратить время на эксперименты с другими, более современными, было лень, она и была установлена. В качестве резистора R3 был использован шунт от старого тестера.

Можно изготовить его из нихрома, но необходимо помнить, что сечение его должно быть достаточным. чтобы пропустить через себя зарядный ток и не раскалиться при этом.

Шунт, установленный параллельно амперметру, подбирается исходя из параметров имеющейся измерительной головки. Устанавливается он непосредственно на клеммах головки.

Печатная плата стабилизатора тока зарядного устройства вот такая:

В качестве трансформатора подойдёт любой от 85 вт и выше. Вторичная обмотка на напряжение 15 вольт. Сечение провода (диаметр по меди) от 1,8 мм.

В качестве выпрямительного моста был установлен 26MB120A. Он, конечно, мощноват для этой конструкции, но уж больно удобно его монтировать — прикрутил на радиатор, нацепил клеммы и всё. Его спокойно заменяем на любой диодный мост. Главное, чтобы держал необходимый ток (про радиатор тоже не забываем).

Для корпуса подвернулся ящик от старой магнитолы. В верхней плоскости его был насверлен ряд отверстий для лучшей вентиляции.

Передняя панель — из листа текстолита. На амперметре установлен шунт, который надо отрегулировать опираясь на показания тестового амперметра.

Транзистор на радиаторе крепится к задней стенке корпуса.

После сборки устройства проверяем стабилизатор тока просто закоротив между собой (+) и (-). Регулятор должен обеспечить плавную регулировку во всём диапазоне зарядного тока. При необходимости — подбираем резистор R1.

!!! Не забываем, что при этом ВСЁ падение напряжения приходится на регулировочный транзистор! Это вызывает его сильный нагрев! Быстро проведя проверку размыкаем перемычку !!!

Теперь зарядным устройством можно пользоваться. Оно будет стабильно поддерживать зарядный ток во всём диапазоне зарядки. Так как устройство не имеет автоматического отключения по окончании зарядки, за уровнем напряжения на аккумуляторе следим по показанию вольтметра.

Понравилось это:

Нравится Загрузка...

Похожее

 

frompinskto.wordpress.com

ПРОСТОЕ РЕГУЛИРУЕМОЕ АВТОМОБИЛЬНОЕ ЗАРЯДНОЕ

Попалась в интернете схема двухканального зарядного устройства. Я не стал делать сразу на два канала, так как не было необходимости - собрал один. Схема вполне рабочая и заряжает прекрасно.

Схема ЗУ для автоаккумуляторов

Характеристики зарядного устройства

  • Напряжение сети 220 В.
  • Выходное напряжение 2 х 16 В.
  • Ток заряда 1 - 10 А.
  • Ток разряда 0,1 - 1 А.
  • Форма тока заряда – однополупериодный выпрямитель.
  • Ёмкость аккумуляторов 10 - 100 А/ч.
  • Напряжение заряжаемых аккумуляторов 3,6 - 12 В.

Описание работы: это зарядно-разрядное устройство на два канала с раздельной регулировкой тока заряда и тока разряда, что очень удобно и позволяет подобрать оптимальные режимы восстановления пластин аккумулятора исходя из их технического состояния. Использование циклического режима восстановления приводит к значительному снижению выхода газов сероводорода и кислорода из-за их полного использования в химической реакции, ускоренно восстанавливается внутреннее сопротивление и ёмкость до рабочего состояния, отсутствует перегрев корпуса и коробление пластин. 

Ток разряда при зарядке ассиметричным током должен составлять не более 1/5 тока заряда. В инструкциях заводов изготовителей перед зарядкой аккумулятора требуется произвести разрядку, то есть провести формовку пластин перед зарядом. Искать подходящую разрядную нагрузку нет необходимости, достаточно выполнить соответствующее переключение в устройстве. Контрольную разрядку желательно проводить током в 0,05С от ёмкости аккумулятора в течении 20 часов. Схема позволяет провести формовку пластин двух аккумуляторов одновременно с раздельной установкой разрядного и зарядного тока. Регуляторы тока представляют ключевые регуляторы на мощных полевых транзисторах VT1,VT2.В цепях обратной связи установлены оптопары, необходимые для защиты транзисторов от перегрузки. При больших токах заряда влияние конденсаторов C3,C4 минимальное и почти однополупериодный ток длительностью 5 мс с паузой в 5 мс ускоряет восстановление пластин аккумуляторов, за счёт паузы в цикле восстановления, не возникает перегрева пластин и электролиза, улучшается рекомбинация ионов электролита с полным использованием в химической реакции атомов водорода и кислорода.

Конденсаторы С2,С3 работая в режиме умножения напряжения, при переключении диодов VD1,VD2, создают дополнительный импульс для расплавления крупнокристаллической сульфатации и переводе окисла свинца в аморфный свинец. Регуляторы тока обеих каналов R2, R5 питаются от параметрических стабилизаторов напряжения на стабилитронах VD3, VD4. Резисторы R7, R8 в цепях затворов полевых транзисторов VT1, VT2 ограничивают ток затвора до безопасной величины.

Транзисторы оптопар U1, U2 предназначены для шунтирования напряжения затвора полевых транзисторов при перегрузке зарядным или разрядным токами. Напряжение управления снимается с резисторов R13, R14 в цепях стока, через подстроечные резисторы R11, R12 и через ограничительные резисторы R9, R10 на светодиоды оптопар. При повышенном напряжении на резисторах R13, R14 транзисторы оптопар открываются и снижают напряжение управления на затворах полевых транзисторов, токи в цепи сток-исток понижаются.

Режим заряда устанавливается переключателями SA1, SA2 в верхнее положение, разряда в нижнее положение. Полевые транзисторы крепятся для охлаждения на отдельные радиаторы. Светодиоды HL1, HL2 показывают правильную полярность подсоединения аккумуляторов в зарядную цепь.

После подключения аккумулятора переключатель режима SA1 или SA2 переводится в режим разряда. Регулятором тока, при включенной сети, устанавливается ток разряда в указанных выше пределах. После снижения тока разряда до нулевого значения через 6-10 часов переключатель режима переводится в верхнее положение – заряд, регулятором тока устанавливается рекомендуемое значение зарядного тока. Через 6-10 часов заряда ток должен упасть до величины подзаряда.

Далее провести повторный разряд. При полной ёмкости 10-ти часового разряда (напряжение не ниже 1,9 Вольта на элемент), провести повторный 10-ти часовой заряд. Проводить зарядно-разрядный цикл аккумулятора рекомендуется даже при отличном его состоянии, легче кристаллизацию устранить в начале эксплуатации и не ждать когда она перейдёт в «застарелую» сульфатацию с ухудшением всех параметров аккумулятора.

Сделал печатку под схему, надеюсь кому нибудь потребуется. На схеме есть опечатка, оптотрон не АОУ110Б (таких нет в природе), а АОТ110Б. В качестве диода VD1, применил КД213 и установил его на радиатор. Насчёт замены оптотрона, тут как мне кажется подойдут из современных 4N32, ну а симисторная оптопара MOC3062 не знаю. В принципе а почему бы и нет?! Если предварительно на макетке собирать, то можно многие оптопары "обкатать" на этой схеме.

Испытания уже проводил без корпуса. При токе зарядки 5 А, радиатор транзистора еле тёплый, радиатор диода КД213 немного сильнее нагрет. Аккумулятор автомобиля заряжался около часа, ток зарядки упал до номинального при достижении 14,8 вольт. Напряжение окончания зарядки выбрал с помощью резистора R11, резистор установил многооборотный, на переднюю панель не стал ставить R11, так как нет необходимости. Просто выставил напряжение окончания и всё. Да, сильно греется R13, на схеме он 10 Вт, может придётся установить ещё более мощный. На этом всё, с вами был Demo.

   Форум по ЗУ

   Обсудить статью ПРОСТОЕ РЕГУЛИРУЕМОЕ АВТОМОБИЛЬНОЕ ЗАРЯДНОЕ

radioskot.ru

Автомобильное зарядное устройство своими руками

soundbarrel.ru

ЗАРЯДНЫЕ УСТРОЙСТВА ДЛЯ АВТОМОБИЛЬНЫХ АККУМУЛЯТОРОВ

ЗАРЯДНОЕ УСТРОЙСТВО С ТАЙМЕРОМ

    Пуск зарядного устройства производится нажатием кнопки "пуск" на лицевой панели, при этом на схему подаётся питающее напряжение, реле К1 срабатывает и обеспечивает "самоподхват".    По окончании зарядки реле К1 срабатывает, и схема полностью отключается от сети. Настройка схемы очень похожа на настройку предыдущей схемы и здесь не описывается - собственно, это вариант предыдущей схемы.     В качестве переключателя режима работы SA1 можно использовать подходящий тумблер с тремя фиксированными состояниями. Реле К1 типа РП-21 или аналогичное с катушкой на 24 В. и контактами, способными коммутировать переменный ток 5 А., 220 В.

 

 

ЗАРЯДНОЕ УСТРОЙСТВО СО СТАБИЛИЗАТОРОМ ТОКАИ КОНТРОЛЕМ НАПРЯЖЕНИЯ ЗАРЯДКИ

    Ещё одно зарядное устройство собрано по схеме ключевого стабилизатора тока с узлом контроля достигнутого напряжения на аккумуляторе для обеспечения его отключения по окончании зарядки. Для управления ключевым транзистором используется широко распространённая специализированная микросхема TL494 (KIA494, КА7500В, К1114УЕ4).    Устройство обеспечивает регулировку тока заряда в пределах 1- б А. (10 A. max) и выходного напряжения 2 - 20 В. Ключевой транзистор VT1, диод VD5 и силовые диоды VD1 - VD4 через слюдяные прокладки необходимо установить на общий радиатор площадью 200 - 400 кв. см.    Наиболее важным элементом в схеме является дроссель L1. От качества его изготовления зависит КПД схемы. Требования к его изготовлению описаны в предыдущей схеме. В качестве сердечника можно использовать импульсный трансформатор от блока питания телевизоров ЗУСЦТ или аналогичный.    Очень важно, чтобы магнитопровод имел щелевой зазор примерно 0,5 ... 1,5 мм для предотвращения насыщения при больших токах. Количество витков зависит от конкретного магнитопровода и может быть в пределах 15 - 100 витков провода ПЭВ-2 2,0 мм. Если количество витков избыточно, то при работе схемы в режиме номинальной нагрузки будет слышен негромкий свистящий звук. Как правило, свистящий звук бывает только при средних токах, а при большой нагрузке индуктивность дросселя за счёт подмагничивания сердечника падает и свист прекращается.    Если свистящий звук прекращается при небольших токах и при дальнейшем увеличении тока нагрузки резко начинает греться выходной транзистор, значит площадь сердечника магнитопровода недостаточна для работы на выбранной частоте генерации - необходимо увеличить частоту работы микросхемы подбором резистора R4 или конденсатора СЗ или установить дроссель большего типоразмера.

 

    При отсутствии силового транзистора структуры p-n-р в схеме можно использовать мощные транзисторы структуры n-p-п, как показано на рисунке.

    В качестве диода VD5 перед дросселем L1 желательно использовать любые доступные диоды с барьером Шоттки, рассчитанные на ток не менее 10 А. и напряжение 50В, в крайнем случае, можно использовать среднечастотные диоды КД213 , КД2997 или подобные импортные. Для выпрямителя можно использовать любые мощные диоды на ток 10А или диодный мост, например КВРС3506, МР3508 или подобные. Сопротивление шунта в схеме желательно подогнать под требуемое.     Диапазон регулировки выходного тока зависит от соотношения сопротивлений резисторов в цепи вывода 15 микросхемы. В нижнем по схеме положении движка переменного резистора регулировки тока напряжение на выводе 15 микросхемы должно совпадать с напряжением на шунте при протекании через него максимального тока.    Переменный резистор регулировки тока R3 можно установить с любым номинальным сопротивлением, но потребуется подобрать смежный с ним постоянный резистор R2 для получения необходимого напряжения на выводе 15 микросхемы. Переменный резистор регулировки выходного напряжения R9 также может иметь большой разброс номинального сопротивления 2 - 100 кОм.    Подбором сопротивления резистора R10 устанавливают верхнюю границу выходного напряжения. Нижняя граница определяется соотношением сопротивлений резисторов R6 и R7, но её нежелательно устанавливать меньше 1 В.    Микросхема установлена на небольшой печатной плате 45 х 40 мм., остальные элементы схемы установлены на основании устройства и радиаторе. Монтажная схема подключения печатной платы приведена на рисунке справа.

   В схеме использовался перемотанный силовой трансформатор ТС180, но в зависимости от величины требуемых выходных напряжений и тока мощность трансформатора можно изменить. Если достаточно выходного напряжения 15 В. и тока б А., то достаточно силового трансформатора мощностью 100 Вт. Площадь радиатора, также можно уменьшить до 100 - 200 кв. см.    Устройство может использоваться как лабораторный блок питания с регулируемым ограничением выходного тока. При исправных элементах схема начинает работать сразу и требует только подстройки.

 

ЗАРЯДНОЕ УСТРОЙСТВО ПОВЫШЕННОЙ МОЩНОСТИ

    Наибольшие проблемы вызывает изготовление накопительного дросселя L1, выбор ключевого транзистора и выходного диода. Параллельное включение нескольких мощных транзисторов проблему не очень решает, т. к. требуется выровнять падения напряжения на каждом транзисторе, в противном случае, основную нагрузку по току возьмёт на себя один из транзисторов и быстро перегреется. Если в качестве ключевого транзистора использовать мощные силовые N- канальные полевые транзисторы, например, IRFP264, потребуется дополнительный узел, обеспечивающий превышение напряжения на затворе на 15 В. В относительно истока, подключенного к накопительному дросселю.    Номенклатура Р - канальных силовых полевых транзисторов, которые проще внедрить в схему, достаточно мала и не позволяет найти приемлемый вариант. Можно использовать силовые n-p-п транзисторы BUX20, специально предназначенные для таких устройств и обеспечивающие ток коммутации до 50 А., но схему придётся усложнить, т. к. эти транзисторы имеют малый коэффициент усиления и иную структуру. Наиболее просто увеличить выходной ток в ранее рассмотренной схеме - это применить двухтактное ключевое регулирование, дополнив схему ещё одним накопительным дросселем, ключевым транзистором и диодом. Предлагаемая схема обеспечивает такие возможности. Требования к изготовлению накопительных дросселей аналогичны.    Транзисторы VI, VT2, выходные диоды VD3, VD4 и диодный мост VD1 устанавливаются через слюдяные прокладки на общий радиатор, в качестве которого можно использовать металлическое днище прибора. Настройка схемы ничем не отличается от ранее описанной и не приводится.    Из-за повышенных рассеиваемых мощностей в качестве накопительных конденсаторов CI, С5 следует использовать только конденсаторы больших размеров и с повышенным рабочим напряжением.

 

   По материалам сайта http://kravitnik. narod. ru

   

Адрес администрации сайта: [email protected]   

 

Зарядное для автоаккумуляторов | Все своими руками

Опубликовал admin | Дата 21 марта, 2016

     Здравствуйте дорогие читатели. Хочу предложить схему зарядного устройства со стабилизацией тока. При разработке схемы предполагалось, что данное устройство будет оставляться в рабочем состоянии без присмотра.

      Схема устройства представлена на рисунке 1. Вообще зарядное состоит из двух частей, стабилизатора напряжения и стабилизатора тока. Стабилизатор напряжения был описан в статье «Блок питания для автомагнитолы 12в », только он собран на транзисторах другой структуры. Из этой статьи можно взять и рисунок печатной платы для данного стабилизатора. Схема стабилизатора напряжения содержит всего два транзистора разной структуры, такая схема обладает триггерным эффектом, при котором при превышении тока нагрузки определенной величины, регулирующий транзистор VT2, резко закрывается, это обеспечивает защиту от коротких замыканий.

     Выходное напряжение стабилизатора (рис.1) равно 10… 15В. Значение этого напряжения устанавливается с помощью резистора R11. Опорное напряжение стабилитрона определяет минимальный уровень выходного напряжения. При указанных номиналах резисторов и напряжении стабилизации стабилитрона 8,2 В, блок питания имеет следующие параметры:Выходное напряжение…………………… 10… 15ВТок срабатывания защиты………………... 5АТок короткого замыкания………………...0,038АКоэффициент стабилизации схемы определяется усилительными свойствами транзистора VT1. Максимальный ток стабилизации определяется регулирующим транзистором VT2 и ограничен мощностью, рассеиваемой транзистором VT2.     Уровень тока защиты регулируется величиной резистора R9. В качестве выпрямительных диодов можно применить любые диоды с максимальным прямым током в 10А – КД213А; КД201А,Б,В,Г; Д214А. Так как у диодов катод соединен с его корпусом, то их можно установить на одном радиаторе. Так же на радиаторы необходимо установить и регулирующие транзисторы VT2 и VT3. Приблизительно определить необходимую площадь радиаторов можно по диаграмме, которую можно посмотреть в статье «Расчет радиаторов». В качестве R11 можно применить любой резистор переменного сопротивления. Но лучше многооборотный.

     За стабилизатором напряжения следует стабилизатор тока, собранный на транзисторе VT2 и микросхеме DA2.1 — LM358N. Необходимый уровень тока стабилизации устанавливается переменным резистором R13. Датчиком тока является резистор R17. Данный стабилизатор тоже был описан ранее в статье «Зарядное устройство с токовой стабилизацией». Правда, в качестве регулирующего транзистора применен аналог транзистора КТ827, собранный на транзисторах КТ819 и КТ815. Применение регулирующего транзистора в минусовом проводе позволяет не изолировать радиатор этого транзистора от корпуса, или использовать в качестве радиатора сам корпус зарядного устройства, если он металлический конечно.     На втором операционном усилителе микросхемы DA2 собран компаратор блока защиты зарядного устройства от превышения температуры. В качестве датчика температуры используется терморезистор с отрицательным ТКС. В принципе, при возникновении внештатной ситуации вся дополнительная нагрузка ляжет на трансформатор, что приведет к повышению его температуры. Поэтому имеет смысл терморезистор через термопасту прикрепить именно к нему.     Работает эта схема следующим образом. В нормальных условиях, когда температура не превышает предельно допустимую, напряжение на неинвертирующем входе ОУ (вывод 5) больше, выставленного резистором R4, напряжения на инвертирующем входе (вывод 6). В такой ситуации на выходе DA2.2 будет присутствовать напряжение близкое к напряжению питания данного усилителя и светодиод оптотиристора ТО125 — 12,5 светиться не будет. Тиристор будет закрыт. При увеличении температуры величина сопротивления терморезистора RT, начнет уменьшаться, уменьшаться начнет и величина напряжения на неинвертирующем входе операционного усилителя DA2.2 (вывод 5). Как только величина этого напряжения будет меньше напряжения на выводе 6, на выходе этого ОУ напряжение уменьшится практически до нуля. Засветится светодиод оптотиристора, сам тиристор откроется — произойдет планируемое короткое замыкание. Предохранитель сгорит, это приведет к гарантированному отключению всего устройства от первичной сети переменного тока, а это в определенных случаях дорогого стоит. Лучше предохранитель новый купить, чем потом расплачиваться за содеянное. Резистор R2 — резистор положительной обратной связи. За счет его исключается «дребезг» переключения компаратора и возникает необходимый гистерезис между напряжением включения и выключения термореле.     Настройка зарядного устройства заключается в следующем. Берете ваш аккумулятор и заряжаете его по всем правилам. Зарядка должна быть полной, контроль только по плотности электролита с помощью ареометра. После этого замеряете напряжение на его клеммах и такое же напряжение устанавливаете на выходе стабилизатора резистором R11. Напряжение выставляется с точностью до десятых долей вольта. Поэтому для этой цели лучше использовать мультиметр. Добавочный резистор, т.е. его номинал зависит от сопротивления измерительной головки, которую вы найдете. Формулу для расчета добавочного сопротивления можно посмотреть в статье «Как рассчитать шунт и добавочное сопротивление» . И так напряжение выставили, теперь резистором R13 устанавливает необходимый зарядный ток, величину которого контролируем тем же мультиметром. В принципе, встраивать вольтметр и амперметр в устройство нет необходимости. Просто в процессе регулировки выставляете необходимые параметры заряда для именно вашего аккумулятора (одинаковых аккумуляторов не бывает) и все. Все! Подключайте аккумулятор. В первый момент, если он сильно разряжен, ток будет ограничиваться, выставленным вами уровнем, по мере заряда ток будет уменьшаться. После того, как напряжение на клеммах достигнет напряжения полностью заряженного аккумулятора, ток будет совсем не большим. В таком состоянии аккумулятор может находиться сколь угодно долго. Это зарядка аккумулятора по контролю напряжения. Успехов. К.В.Ю. Скачать статью

Download “Зарядное для аккумуляторов автомобиля” zaryadnoe-dlya-akkumulyatorov.rar – Downloaded 525 times – 67 KB

Обсудить эту статью на - форуме "Радиоэлектроника, вопросы и ответы".

Просмотров:10 111

www.kondratev-v.ru

Зарядное устройство для автомобильного аккумулятора

Опубликовал admin | Дата 26 октября, 2017

На рисунке 1 в статье представлена схема зарядного устройства со стабилизацией зарядного тока, рассчитанного на зарядку 12 вольтовых аккумуляторов. Минимальный ток заряда устройства – 1 ампер, а максимальный – 7А.

Такая схема у нас использовалась в прецизионном генераторе стабильного тока, был у меня на рабочем месте такой прибор. Правда стабилизаторы тока там были другими, и ключи были реализованы на биполярных транзисторах и без гальванической развязки. Но тут важна идея, а вспомнить эту идею меня заставила просьба одного из посетителей сайта.

Нужно зарядное устройство, по возможности не сложное, с управлением для «блондинок», чтобы всегда лежало в гараже, зимой не отапливаемом. Короче нужна коробочка с четырьмя проводами – два — сеть, два – выход. Ну, и более-менее точным, применительно к выбранному току заряда. И так,

Работа схемы

Зарядное устройство состоит из трех стабилизаторов тока, рассчитанных на различные его величины. Величины токов соответствуют весу разряда в двоичной системе счисления, т.е. 1, 2, 4. Например, что бы выставить зарядный ток, равный пяти амперам, надо засветить светодиоды оптронов U1 и U3. При этом откроются ключи VT1 и VT3.2 и подключат стабилизаторы тока на 1 и 4 ампера к напряжению питания. А на выходе устройства мы получим стабильный ток величиной 1А + 4А = 5А. Можно добавить при желании еще один стабилизатор тока на 0,5 А. Его так же можно использовать для компенсации тока саморазряда при хранении аккумулятора.

Напряжение на входе схемы не должно превышать 20 вольт. Именно такая величина напряжения является максимальной для переходов затвор – исток большинства полевых МОСФЕТ транзисторов. В противном случае потребуется введение в схему дополнительных элементов – параллельно переходам транзисторов затвор – исток поставить стабилитроны на напряжение, примерно, 12 вольт, плюсом к затвору. А последовательно с коммутирующим элементом поставить гасящее сопротивление на 560 Ом см. рисунок 2. Как работают схемы стабилизаторов тока, можно подробно прочитать в статье «Зарядное устройство для гелевых аккумуляторов на кр142ЕН12А».

В схеме для управления ключевыми транзисторами показаны оптроны, это в случае, если зарядное устройство будет управляться микроконтроллером. Для ручной установки зарядного тока вместо оптронов можно применить обычные тумблеры с надписями, соответствующими току стабилизации. Смотрим рисунок 2. Для получения тока заряда 6А необходимо включить тумблеры 2 и 4, для тока 7А – включаем все три тумблера 1А + 2А + 4А = 7А. Здесь работает одно из правил Кирхгофа, для нашего случая оно будет читаться, так – ток, вытекающий из узла равен сумме токов втекающих в узел. Узлом называется точка цепи, к которой присоединяются три или более элементов цепи. У нас этот узел – выход зарядного устройства.

Учитывая тот факт, что тумблеры будут находиться на расстоянии от затвора ключевого транзистора, в схему введен фильтрующий конденсатор С1, с резистором R4 он образует Г образный фильтр, шунтирующий возможные наводки на соединительные провода. Если точность стабилизированных токов не столь уж и важна, то можно обойтись и без элементов регулировки тока стабилизации, подобрав величину датчика тока – резистор R3 на рисунке 2. Формула расчета значения этого резистора приведена на рисунке 1. Для четырехамперного стабилизатора тока его величина будет равна R3 = 1,25 : 4 = 0,3125 Ом. Так же можно рассчитать и величину других датчиков тока. Но не забывайте о мощности этих резисторов. Для стабилизатора с током в четыре ампера мощность резистора датчика тока P = I² ∙ R, Р = 16 ∙ 0,3125=5 Вт. В зарядных устройствах такого типа, со стабилизацией тока, степень заряженности аккумулятора определяется временем его заряда.

Эта схема универсальная и может быть использована в других типах зарядных устройств. Если на вход данной схемы подать стабилизированное напряжение необходимой величины, то таким устройством можно заряжать свинцовые герметизированные гелевые аккумуляторы. Схема не боится коротких замыканий на выходе, так как выходные токи ограничены, и общая надежность устройства высока, так как общий выходной ток разделен на несколько каналов.Можно изменить величины токов стабилизации, например, 0,1, 0,2, 04, 08A. При небольших зарядных токах все элементы схемы можно применить в исполнении SMD. Применив для управления данной схемой микроконтроллер, можно просто обеспечить логику заряда литий-ионных аккумуляторов. Определенному режиму заряда аккумулятора будет просто соответствовать определенное число, выводимое на выходы контроллера.

В качестве ключевых транзисторов применены:

На этом пока все. Успехов. К.В.Ю.

Скачать статью

Download “universalnoe-avtomobilnoe-zaryadnoe-ustrojstvo” universalnoe-avtomobilnoe-zaryadnoe-ustrojstvo.rar – Downloaded 95 times – 84 KB

Обсудить эту статью на - форуме "Радиоэлектроника, вопросы и ответы".

Просмотров:190

www.kondratev-v.ru


Смотрите также