Устройство, эксплуатация и характеристики литий─ионных аккумуляторов. Литий ионные автомобильные аккумуляторы


Литий-ионные аккумуляторы - в электромобилях

Основой для отрицательного электрода в Li-ion аккумуляторах служит углеродная матрица. Она может изготавливаться из природного или синтетического графита, кокса, пиролизного или мезофазного углерода, сажи и др. Ионы лития при внедрении раздвигают слои углеродной матрицы и располагаются между ними. Положительные электроды литий-ионных аккумуляторов изготавливаются из литированных оксидов кобальта или никеля и из литий-марганцевых шпинелей.

Конструкция и применяемые материалы

Внешний вид Li-ion батареи

Конструктивно Li-ion аккумуляторы производятся в цилиндрическом и плоском вариантах. В цилиндрических аккумуляторах свернутый в виде рулона пакет электродов и сепаратора помещен в стальной или алюминиевый корпус, с которым соединен отрицательный электрод. Положительный полюс аккумулятора выведен через изолятор на крышку.

Плоские аккумуляторы производятся складыванием прямоугольных пластин друг на друга. Они обеспечивают более плотную упаковку в батарее, но в них труднее, чем в цилиндрических, поддерживать сжимающие усилия на электроды. В некоторых плоских аккумуляторах применяется рулонная сборка пакета электродов, который скручивается в спираль. Это позволяет объединить достоинства двух описанных выше типов конструкций.

Разноименные электроды разделяются сепаратором из пористого полипропилена. Конструкция Li-ion отличается абсолютной герметичностью. Это необходимо для предотвращения вытекания жидкого электролита и попадания в аккумулятор кислорода и паров воды из окружающей среды. Кислород и пары воды реагируют с материалами электродов и электролитом и полностью выводят аккумулятор из строя.

Преимущества и недостатки Li-ion аккумуляторов

Li-ion аккумуляторы обладают рядом неоспоримых достоинств: повышенный срок службы при небольших размерах, малом весе и более высокая по сравнению с батареями других типов энергетическая плотность. Литиевые батареи принимают высокий ток зарядки и разрядки. Поэтому зарядка займет меньше времени, пройдет более эффективно (это полезно при рекуперации энергии во время торможения).

Однако при этом нельзя допускать перегрева: чем выше ток, тем сильнее нагрев. И вопрос не только в сокращении срока службы аккумуляторов, но и в риске возникновения пожара, так как у лития низкая устойчивость к возгоранию. Поэтому еще на стадии производства строго следят за технологией: мельчайшая примесь в сепараторе ячеек может способствовать возникновению внутренних замыканий, которые в состоянии нагреть литий до температуры возгорания.

Под крышкой аккумулятора устанавливается устройство, реагирующее на повышение температуры увеличением сопротивления, и другое, которое разрывает электрическую связь между катодом и положительной клеммой при повышении давления газов внутри аккумулятора выше допустимого предела. В ходе эксплуатации за безопасностью следит специальная электроника, контролирующая температуру в каждой ячейке, температуру модуля, в котором они собраны, и температуру пакета аккумуляторов. Необходима и эффективная охлаждающая система.

Саморазряд Li-ion аккумуляторов составляет всего лишь 4-6 % за первый месяц, затем — еще меньше: за год аккумуляторы теряют 10-20% запасенной емкости. Потери емкости у Li-ion аккумуляторов в зависимости от температуры в несколько раз меньше, чем у никель-кадмиевых аккумуляторов. Ресурс-500-1000 циклов.

Применение Li-ion баттарей в гибридах и электромобилях

Схема работы Li-ion аккумулятора

При создании гибридов и электромобилей разработчики все чаще применяют литий-ионные батареи. Во-первых, это связано с их лучшим весовым качеством (отношением запасенной энергии к массе). Современные батареи, применяемые на автомобилях, способны вмещать 0,8-2,6 кВт*ч на килограмм собственного веса. Во-вторых, они допускают более глубокий заряд и разряд.

Если для никель-металлгидридного аккумулятора оптимальный диапазон зарядки составляет от 40% до 60%, то есть всего 20% общей емкости, то для литий-ионного она в 2,5 раза больше: от 25% до 75%. Срок их службы больше. Например, гарантия на литий-ионную батарею французской фирмы SAFT составляет 10 лет, а на никель-металлгидридную производства Panasonic – только 8 лет. Есть у литий-ионных батарей и существенные недостатки.

Во-первых, невозможность реанимировать полностью разряженный аккумулятор. Во-вторых, для работы им нужно обеспечить узкий температурный диапазон от 25 до 45 градусов. Если их не согревать зимой, емкость упадет на треть при -10, и наполовину при -20 градусов. Летом еще опаснее: при 55-60 градусах аккумуляторы начинают разрушаться – их приходится охлаждать даже при стоянке на солнцепеке. Высока и себестоимость, которая может достигать до половины цены всего электромобиля. Однако будущее все равно за литий-ионными батареями.

История создания Li-ion аккумуляторов

Первичные химические источники тока с литиевым анодом появились в 70-х годах. Однако при создании аккумуляторов, составленных из них, возникли серьезные проблемы, которые были преодолены только к середине 90-х годов. Эти проблемы были связаны с активностью лития: при больших токах происходил разогрев и самовозгорание батареи. Поэтому от применения чистого лития отказались, а решили использовать его ионы. Отсюда и пошло название аккумуляторов.

Хотя литий-ионные аккумуляторы обеспечивают меньшую энергетическую плотность, чем литиевые аккумуляторы, зато они безопасны при условии соблюдения правильных режимов заряда и разряда. В них отсутствует металлический литий, а процессы разряда и заряда сводятся к переносу ионов лития с одного электрода на другой.

avtonov.info

Новосибирские литий-ионные аккумуляторы Лиотех

Использование литий-железо-фосфатных аккумуляторов (lifepo4) сейчас набирает всё большую популярность так-как они стали более доступны и подешевели относительно других типов аккумуляторов. На сегодняшний день эти аккумуляторы самые неприхотливые и выносливые и служат значительно дольше чем свинцово-кислотные, только не путайте их с обычными литий-ионными аккумуляторами. В lifepo4 немного иная химия, которая обеспечивает большое количество циклов заряд-разряд, среднее около 3000 циклов, и долгий срок службы так-как в отличие от литий-ионных такие АКБ не стареют сами по себе так быстро как литий-ионные. Производители заявляют до 20лет и более без заметного ухудшения характеристик аккумуляторов. Но правда сейчас много производителей lifepo4, и качество очень сильно разнится, по-этому лучше покупать качественное.

У нас в России тоже производят литий-ионные аккумуляторы. Общество с ограниченной ответственностью «Литий-ионные технологии» (ООО «Лиотех») - дочернее предприятие ОАО «РОСНАНО». Компания Лиотех создана для реализации в нашей стране проекта по производству современных литий-ионных аккумуляторов (ЛИА). Подробности и дополнительную информацию вы можете почитать на официальном сайте Лиотех.

Lifepo4 аккумуляторы обладают рядом отличий, которые их делают очень привлекательными и где-то даже незаменимыми. Во-первых в отличие от свинцово-кислотных этим аккумуляторам не требуется для долголетия строго соблюдать режим заряда-разряда, их не требуется заряжать на 100% и они конечно не страдают от сульфатации, и не теряют емкость от глубоких разрядов.А из-за того что у них очень низкое внутреннее сопротивление, эти аккумуляторы могут быстро заряжаться (всего за час) и отдавать огромные токи разряда. А так-же КПД заряда-разряда около 95%, что позволяет получать больше энергии с аккумуляторов и экономить на зарядке АКБ.

Особенно хорошо они подходят для электротранспорта, их устанавливают в электро-автобусы, электромобили и др., так-как их энергоёмкость в два раза выше чем у свинцово-кислотных, и они хорошо себя чувствуют при глубоких разрядах. Так-же они лучше других подходят для накопления энергии (ИБП, солнечные и ветряные электростанции) так-как КПД заметно выше, плюс долговечность и большое количество циклов заряда-разряда.

Цены сейчас сопоставимы с хорошими GEL и AGM аккумуляторами, но прослужат Lifepo4 гораздо дольше так-как средний срок жизни AGM и GEL 5-10лет, и это при условии правильной эксплуатации, но в циклическом режиме они могут потерять ёмкость и раньше так-как отрабатывают в зависимости от качества и глубины разрядов 500-1500 циклов. А к примеру аккумуляторы от Лиотех при глубине разряда 80% 3000 циклов, при этом они и дальше продолжают работать в то время как свинцово-кислотные заметно теряют емкость. А в буферном режиме и неглубоком циклировании АКБ Лиотех отработают 5000-7000 циклов и более. Единственное что боятся такие аккумуляторы это перезаряд (нельзя заряжать больше 3,75вольт на ячейку), и глубокий разряд ячеек (меньше 2 вольта нельзя разряжать), по-этому нужно устанавливать на аккумуляторы BMS (плата защиты аккумулятора). > Лиотех производит линейку аккумуляторов емкостью от 200Ач, напряжение аккумуляторов 3.2v, для аккумулятора на 12v надо четыре таких отдельных ячейки. Ниже на скриншоте АКБ с розничными ценами на них с офциального сайта. Цена конечно не маленькая, но сейчас эти аккумуляторы стали выгоднее чем зарубежные аналоги. >

Аккумуляторы Лиотех для авто-звука

Так-же Lifepo4 аккумуляторы очень популярны среди любителей авто-звука, так-как эти АКБ отдают большие токи и их напряжение при этом просаживается гораздо меньше чем у свинцово-кислотных. Когда токи нагрузки под 200Ампер и более, то напряжение свинцово-кислотных падает до 11-10 вольт, а Lifepo4 держит напряжение в районе 12.7 вольт и оно не сильно проседает. К примеру ниже на фото мощная система на аккумуляторах Lifepo4. >

>

Аккумуляторы Лиотех для солнечных батарей

А этот аккумулятор на 240Ач работает в составе солнечной электростанции > ИПБ Лиотех на литий-железо-фосфатных аккумуляторах >

e-veterok.ru

Литий-полимерный аккумулятор: отличие от ионного, срок службы, устройство. Li-pol или Li-ion: какой лучше

Рост потребительского интереса к мобильным гаджетам и технологичной портативной технике в целом заставляет производителей совершенствовать свою продукцию в самых разных направлениях. При этом существует целый ряд общих параметров, работа над которыми ведется в одном русле. К таким можно отнести способ энергообеспечения. Всего несколько лет назад активные участники рынка могли наблюдать процесс вытеснения никель-кадмиевых аккумуляторов NiCd более совершенными элементами никель-металлгидридного происхождения NiMH. Сегодня же соперничество ведут между собой уже новые генерации батарей. Широко распространенную литий-ионную технологию в некоторых сегментах успешно вытесняет литий-полимерный аккумулятор. Отличие от ионного в новом блоке не так заметно для рядового пользователя, но в некоторых аспектах оно существенно. При этом, как и в случае конкуренции элементов NiCd и NiMH, замещающая технология далеко не безупречна и по некоторых показателям уступает аналогу.

Устройство аккумулятора Li-ion

Первые модели серийных аккумуляторов на основе лития стали появляться еще в начале 1990 годов. Однако в качестве активного электролита тогда использовался кобальт и марганец. В современных же литий-ионных батареях важно не столько вещество, сколько конфигурация его размещения в блоке. Такие аккумуляторы состоят из электродов, которые разделяются сепаратором с порами. Масса сепаратора, в свою очередь, как раз и пропитывается электролитом. Что касается электродов, то их представляет катодная основа на алюминиевой фольге и медный анод. Внутри блока катод и анод соединяются между собой клеммами-токосъемникам. Обслуживание заряда выполняет положительный заряд ион лития. Этот материал выгоден тем, что располагает способностью легко проникать в кристаллические решетки других веществ, формируя химические связи. Впрочем, положительных качеств таких батарей все чаще оказывается недостаточно для современных задач, что и обусловило появление элементов Li-pol, которые имеют немало особенностей. В целом же стоит отметить и сходство литий-ионных источников питания с гелиевыми полноформатными АКБ для автомобилей. В обоих случаях батареи разрабатываются с расчетом на физическую практичность в использовании. Отчасти это направление развития продолжили и полимерные элементы.

Устройство литий-полимерного аккумулятора

Толчком для совершенствования литиевых аккумуляторов стала необходимость борьбы с двумя недостатками существующих батарей Li-ion. Во-первых, они небезопасны в эксплуатации, а во-вторых, довольно дорого обходятся по цене. Избавляться от данных минусов технологи решили путем смены электролита. В итоге на смену пропитанному пористому сепаратору пришел полимерный электролит. Надо отметить, что полимер и раньше использовался в электротехнических нуждах в качестве пластиковой пленки, проводящей ток. В современной же батарее толщина элемента Li-pol достигает 1 мм, что также снимает с разработчиков ограничения по использованию различных форм и размеров. Но главное заключается в отсутствии жидкого электролита, благодаря чему исключается риск воспламенения. Теперь стоит подробнее рассмотреть отличия от литий-ионных элементов.

В чем главное отличие от ионной батареи?

Принципиальное отличие заключается в отказе от гелиевых и жидкостных электролитов. Для более полного понимания этой разницы стоит обратиться к современным моделям автомобильных аккумуляторов. Потребность в замене жидкого электролита была обусловлена, опять же, интересами безопасности. Но если в случае с автомобильными АКБ прогресс остановился на тех же пористых электролитах с пропиткой, то литиевые модели получили полноценную твердую основу. Чем же так хорош твердотельный литий-полимерный аккумулятор? Отличие от ионного заключается в том, что активное вещество в виде пластины в зоне контакта с литием препятствует формированию дендритов при циклировании. Как раз этот фактор исключает вероятность взрывов и возгораний таких батарей. Это лишь то, что касается достоинств, но также есть и слабые места у новых элементов питания.

Срок службы литий-полимерного аккумулятора

В среднем такие аккумуляторы выдерживают порядка 800-900 циклов зарядки. Данный показатель является скромным на фоне современных аналогов, но даже не этот фактор можно рассматривать как определяющий ресурс элемента. Дело в том, что такие аккумуляторы подвержены интенсивному старению независимо от характера эксплуатации. То есть даже если батарея вовсе не используется, ее ресурс будет сокращаться. Причем не имеет значения, это литий-ионный аккумулятор или литий-полимерный элемент. Все источники питания, базирующиеся на литиевой основе, характеризуются данным процессом. Существенную утрату в объеме можно заметить уже через год после приобретения. Спустя 2-3 года некоторые батареи и вовсе выходят из строя. Но многое зависит от производителя, поскольку внутри сегмента тоже есть различия в качестве исполнения аккумулятора. Аналогичные проблемы свойственны и элементам NiMH, которые подвергаются старению при резких температурных колебаниях.

Недостатки

Кроме проблем с быстрым устареванием, такие аккумуляторы нуждаются в дополнительной системе защиты. Связано это с тем, что внутреннее напряжение на разных участках может привести к перегоранию. Поэтому используется особая схема стабилизации, предотвращающая перегревы и перезаряды. Эта же система влечет и другие недостатки. Главным из них является ограничение тока. Но, с другой стороны, дополнительные защитные схемы делают безопаснее литий-полимерный аккумулятор. Отличие от ионного в плане стоимости тоже имеет место. Полимерные батареи стоят дешевле, но ненамного. Их ценник также повышается из-за внедрения электронных защитных схем.

Эксплуатационные особенности гелеобразных модификаций

С целью повышения электропроводности в полимерные элементы технологи все же добавляют гелеобразный электролит. О полном переходе на такие вещества речи не идет, поскольку это противоречит концепции данной технологии. Но в портативной технике часто используют именно гибридные элементы питания. Их особенность заключается в чувствительности к температуре. Производители рекомендуют использовать такие модели батарей в условиях от 60 °C до 100 °C. Это требование определило и особую нишу применения. Использовать гелеобразные модели можно только в местах с жарким климатом, не говоря о необходимости погружения в теплоизолированный корпус. Тем не менее вопрос о том, какой аккумулятор выбрать – Li-pol или Li-ion, - не так остро стоит на предприятиях. Там, где особое влияние имеет температура, часто применяются комбинированные решения. Полимерные элементы в таких случаях обычно используют в качестве резервных.

Оптимальный метод зарядки

Обычное время восполнения заряда у литиевых аккумуляторов составляет в среднем 3 ч. Причем в процессе зарядки блок остается холодным. Наполнение происходит в два этапа. На первом напряжение достигает пиковых величин, и такой режим поддерживается до набора 70%. Остальные 30% набираются уже в условиях нормального напряжения. Интересен и другой вопрос – как заряжать литий-полимерный аккумулятор, если нужно в постоянном режиме поддерживать его полный объем? В таком случае следует соблюдать график подзарядок. Эту процедуру рекомендуется производить примерно каждые 500 ч эксплуатации с полной разрядкой.

Меры предосторожности

В процессе эксплуатации следует применять только соответствующий по характеристикам зарядный прибор, подключая его к сети со стабильным напряжением. Также необходимо проверять состояние разъемов, чтобы не произошло размыкания аккумулятора. Важно учитывать, что, несмотря на высокую степень безопасности, это все же чувствительный к перегрузкам тип аккумулятора. Литий-полимерный элемент не терпит превышения показателей тока, чрезмерного охлаждения внешней среды и механических ударов. Впрочем, по всем этим показателя полимерные блоки все же более надежны, чем литий-ионные. И все-таки главный аспект безопасности заключается в безвредности твердотельных источников питания – разумеется, при условии поддержания их герметичности.

Какой аккумулятор лучше – Li-pol или Li-ion?

Данный вопрос в большей степени определяется условиями эксплуатации и целевым объектом энергоснабжения. Основные преимущества полимерных устройств скорее ощутимы для самих производителей, которые могут свободнее использовать новые технологии. Для пользователя разница будет малозаметна. Например, в вопросе о том, как заряжать литий-полимерный аккумулятор, владельцу придется больше внимания уделять качеству источника энергоснабжения. По времени же заряда это идентичные элементы. Что касается долговечности, то в этом параметре тоже ситуация неоднозначная. Эффект старения в большей степени характеризует полимерные элементы, но практика показывает разные примеры. К примеру, есть отзывы о литий-ионных элементах, которые становятся непригодными уже через год пользования. А полимерные в некоторых аппаратах эксплуатируются по 6-7 лет.

Заключение

Вокруг аккумуляторов по-прежнему сохраняется множество мифов и ложных суждений, которые касаются разных нюансов эксплуатации. И напротив, некоторые особенности батарей замалчиваются производителями. Что касается мифов, то один из них опровергает литий-полимерный аккумулятор. Отличие от ионного аналога заключается в том, что полимерные модели испытывают меньше внутренних нагрузок. По этой причине сеансы зарядки еще не севших аккумуляторов не оказывают вредного воздействия на характеристики электродов. Если же говорить о скрываемых производителями фактах, то один из них касается долговечности. Как уже говорилось, ресурс аккумуляторов характеризуется не только скромным показателем циклов зарядки, но и неизбежной утратой полезного объема элемента питания.

fb.ru

Производство литий─ионных аккумуляторов

К нам почту приходило довольно много вопросов о том, как производятся литий─ионные аккумуляторы. Сегодня постараемся рассмотреть этот вопрос подробнее. Поскольку литиевые аккумуляторы выпускаются различных форм-факторов и характеристик, производство и технология их производства существенно отличаются. В этой статье мы расскажем о производстве наиболее распространённых Li─Ion аккумуляторах, а также сделаем обзор производителей литиевых АКБ. 

Содержание статьи

Производство литий─ионных аккумуляторов

В общем случае производство Li─Ion аккумуляторов можно разделить на следующие этапы:

  • Производство электродов;
  • Сборка электродов в батарею, установка защиты;
  • упаковка в корпус, заливка электролита;
  • Тестирование, заряд.
Как правило, эти этапы присутствуют при сборке литий─ионных батарей всех форм-факторов. В роли анода используется медная фольга с нанесённым слоем графита (в некоторых случаях угля). В качестве катода применяется алюминиевая фольга со слоем материала, содержащего литий. Здесь возможны варианты в зависимости от характеристик конечного изделия: LiCoO2, LiFePO4, LiNiO2, LiMn2О4.

Намотка алюминиевой фольги с литийсодержащим материалом в рулон

Что касается сборки электродов в единую батарею, здесь есть различия для разных типов Li─Ion аккумуляторов. При производстве цилиндрических литий─ионных аккумуляторов (например, 18650) используется скручивание электродов в рулон. При этом они разделяются сепаратором. То есть, подготовленные ленты катода и анода разделяются сепаратором и наматываются в рулон. Чем меньше толщина электродов, тем более ёмкий и мощный можно собрать аккумулятор. Вся сборка помещается в стальной или алюминиевый корпус, заливается электролитом и герметично запечатывается. Снаружи остаются только выводы плюс и минус.

В призматических литий─ионных аккумуляторах используются прямоугольные электроды, которые укладываются друг на друга через сепараторы. Конструкция в этом случае получается такой же, как в случае свинцово-кислотных аккумуляторов для автомобилей. В этом случае производство электродов немного отличается от тех, что используются в цилиндрических моделях. Сначала также изготавливаются ленты катода и анода, а затем из них вырубаются прямоугольные пластины.

Электроды для призматических литий─ионных аккумуляторов

После сборки электродов они помещаются в пластиковый корпус, к ним привариваются токовыводы, заливается электролит и герметично закрываются.

В некоторых призматических литий─ионных аккумуляторах используется сборка электродов в виде эллиптической спирали. Такую конструкцию могут иметь литиевые батарейки для аккумуляторов телефонов.

После сборки, заливки электролита и герметизации проводится тестирование, при котором выявляется производственный брак. После этого проводится первый заряд аккумулятора, во время которого происходит формирование поверхности электродов. В качестве сепаратора используется полиэтиленовый сепаратор. При температуре 130─150 градусов он плавится и тем самым прекращает обмен ионами между катодом и анодом. Это определённая защита при перегреве литиевого аккумулятора.

Кроме того, при производстве Li─Ion аккумуляторов на определённые модели устанавливаются дополнительные виды защиты. Например, цилиндрические аккумуляторы 18650 имеют в торце корпуса специальный клапан. Он открывается, когда давление внутри превышает определённый предел.

Защитный клапан

На все литий─ионные аккумуляторы, используемые в электронике, ставятся контроллеры заряда-разряда. Они предохраняют банку от глубокого разряда и излишнего заряда. Кроме того, часто устанавливается термистор, который размыкает цепь и отключает банку от внешнего мира при увеличении температуры выше определённого предела.

Контроллер заряда-разряда литиевых аккумуляторов

Вернуться к содержанию  

Производители литий─ионных аккумуляторов

Зарубежные компании

За границей производство Li─Ion батарей очень развито. Многие крупные компании выпускают литиевые аккумуляторы. В качестве примера можно привести следующие:

  • Altair Nanotechnologies. Фирма занимается производством материала для анода Li─Ion батарей из титаната лития. В продуктовой линейке Altair Nanotechnologies есть аккумуляторные системы для электроэнергетики, транспортных средств и источников бесперебойного питания. Такие компании из Южной Кореи, как Eig Ltd и Kokam занимаются выпуском для Altair аккумуляторных ячеек;
  • A123 Systems. Компания занимается производством аккумуляторных ячеек и модулей. На их основе делаются аккумуляторы для ТС, сферы электроэнергетики. В производстве литий-железо-фосфатных АКБ компания использует собственную технологию Nanophosphate. Аккумуляторы выпускаются как цилиндрического, так и призматического форм-факторов;
  • Ener1 Battery Company. Компания занимается выпуском Li─Ion аккумуляторных систем для транспортных средств, потребительской электроники и сферы энергетики. Производство размещено в США и Южной Корее;
  • Samsung SDI. Основное производство фирмы ориентировано на выпуск аккумуляторов для электроники. Также выпускаются аккумуляторы для энергетических систем. Компания самостоятельно выпускает литий-железо-фосфатные ячейки ёмкостью 50 Ач, которые используются в распределительных сетях;
  • Saft Batteries. Выпускает накопители Intensium Max, которые созданы на базе Li─Ion аккумуляторов собственного производства. Они применяются для поддержания функционирования возобновляемых источников энергии. В основу аккумуляторных батарей компании положены аккумуляторные ячейки VL41M цилиндрической формы. Катод делается на основе никелевого оксида. Из нескольких VL41M формируют аккумуляторный модуль, который используется в различных системах;
  • Dow Kokam. Эта фирма является совместным предприятием Южной Кореи и США. Они выпускают аккумуляторные системы, модули, ячейки Li─Pol. Их продукция используется в промышленности, транспортных средствах, ИБП, военной сфере. У фирмы есть свои производственные мощности в Южной Корее, Франции, США;
  • BYD. Эта китайская компания занимается выпуском автомобилей, электротранспорта, солнечных батарей, инверторов, а также литий─ионных аккумуляторов. В основе аккумуляторных систем BYD лежат литий-железо-фосфатные ячейки.

Отдельно можете прочитать подробный материал про литий-ионный аккумулятор.Вернуться к содержанию 

Российские производители

В настоящее время в интернете можно найти информацию о таких компаниях, занимающихся выпуском АКБ в России:

  • НПО ССК;
  • Лиотех;
  • АК Ригель;
  • НИИХИТ-2;
  • ОАО «НИАИ «Источник»;
  • ОАО Энергия.

Стоит сказать, что по своим производственным мощностям и ассортименту выпускаемой продукции российские производители значительно уступают зарубежным компаниям.

Если статья оказалась для вас полезной, распространите ссылку на неё в социальных сетях. Это поможет развитию сайта. Голосуйте в опросе ниже и оценивайте материал! Исправления и дополнения к статье оставляйте в комментариях.Вернуться к содержанию

akbinfo.ru

Литий─ионный аккумулятор

В современных мобильных телефонах, ноутбуках, планшетах используются литий─ионные аккумуляторы. Постепенно они вытеснили щелочные аккумуляторы с рынка портативной электроники. Раньше во всех этих устройствах использовались никель─кадмиевые и никель─металлгидридные аккумуляторные батареи. Но их времена прошли, поскольку Li─Ion батареи имеют лучшие характеристики. Правда, они могут заменить щелочные не по всем параметрам. Например, для них недостижимы токи, которые могут отдавать никель─кадмиевые АКБ. Для питания смартфонов и планшетов это некритично. Однако в области портативного электроинструмента, который потребляет большой ток, щелочные аккумуляторы по-прежнему в ходу. Тем менее, работы по разработке аккумуляторов с высокими токами разряда без кадмия продолжаются. Сегодня мы поговорим о литий─ионных аккумуляторных батареях, их устройстве, эксплуатации и перспективах развития. 

Содержание статьи

Как появились литий─ионные батареи?

Самые первые аккумуляторные элементы с анодом из лития были выпущены в семидесятых годах прошлого столетия. У них была высокая удельная энергоёмкость, что сразу сделало их востребованными. Специалисты давно стремились разработать источник на основе щелочного металла, который имеет высокую активность. Благодаря этому было достигнуто высокое напряжение этого типа батарей и удельная энергия. При этом сама разработка конструкции таких элементов была выполнена довольно быстро, а вот их практическое использование вызвало сложности. С ними удалось справиться только в 90-е годы прошлого века.

На протяжении этих 20 лет исследователи пришли к выводу, что основной проблемой является литиевый электрод. Этот металл очень активный и при эксплуатации протекал ряд процессов, приводивших в итоге к воспламенению. Это стали называть вентиляцией с образованием пламени. Из-за этого в начале 90-х годов производители были вынуждены отозвать батареи, выпущенные для мобильных телефонов.

Это случилось после ряда несчастных случаев. В момент разговора ток, потребляемый от аккумулятора, выходил на максимум и началась вентиляция с выбросом пламени. В результате произошло много случаев получения пользователями ожогов лица. Поэтому учёным пришлось дорабатывать конструкцию литий─ионных аккумуляторов.

Металлический литий крайне нестабилен, особенно проявляется при зарядке и разрядке. Поэтому исследователи стали создавать аккумуляторную батарею литиевого типа без использования лития. Стали использоваться ионы этого щелочного металла. Отсюда и пошло их название.

Литий─ионные батареи имеют меньшую удельную энергию, чем литиевые аккумуляторы. Но они безопасны при соблюдении норм заряда и разряда.

Вернуться к содержанию 

Реакции, происходящие в Li─Ion аккумуляторе

Рывком в направлении внедрения литий─ионных аккумуляторных батарей в бытовую электронику стала разработка АКБ, у которых минусовой электрод был выполнен из углеродного материала. Кристаллическая решётка углерода очень хорошо подошла в качестве матрицы для интеркаляции ионов лития. Чтобы увеличить напряжение аккумулятора, положительный электрод был выполнен из оксида кобальта. Потенциал литерованного оксида кобальта составляет примерно 4 вольта.

Величина рабочего напряжения большинства литий─ионных аккумуляторов составляет 3 вольта и более. В процессе разряда на минусовом электроде происходит деинтеркаляция лития из углерода и его интеркаляция в оксид кобальта плюсового электрода. В процесс зарядки процессы происходят наоборот. Получается, что металлического лития в системе нет, а работают его ионы, которые перемещаются с одного электрода на другой, создавая электрический ток.Вернуться к содержанию 

Реакции на отрицательном электроде

Все современные коммерческие модели литий─ионных аккумуляторов имеют минусовой электрод из углеродосодержащего материала. От природы этого материала, а также вещества электролита во многом зависит сложный процесс интеркаляции лития в углерод. Матрица углерод на аноде имеет слоистую структуру. Структура может быть упорядоченной (натуральный или синтетический графит) или частично упорядоченной (кокс, сажа и т. п.).

При интеркаляции ионы лития раздвигают слои углерода, внедряясь между них. Получаются различные интеркалаты. При интеркаляции и деинтеркаляции удельный объем матрицы углерода меняется несущественно. В отрицательный электрод, помимо углеродного материала, могут использоваться серебро, олово и их сплавы. Также пробуют использовать композитные материалы с кремнием, сульфидами олова, соединениями кобальта и т. п.

Вернуться к содержанию 

Реакции на положительном электроде

В первичных литиевых элементах (батарейках) для изготовления плюсового электрода часто используются самые разные материалы. В аккумуляторах этого сделать не получается и выбор материала ограничен. Поэтому плюсовой электрод Li─Ion аккумулятора выполняется из литированного оксида никеля или кобальта. Также могут применяться литий─марганцевые шпинели.

Сегодня ведутся исследования материалов из смешанных фосфатов или оксидов для катода. Как удалось доказать специалистам, такие материалы улучшают электрические характеристики литий─ионных АКБ. Также разрабатываются способы нанесения оксидов на поверхность катода.

Реакции, протекающие в литий─ионном аккумуляторе при заряде, можно описать следующими уравнениями:

положительный электрод

LiCoO2 → Li1-xCoO2 + xLi+ + xe—

отрицательный электрод

С + xLi+ + xe— → CLix

В процессе разряда реакции идут в обратном направлении.

На рисунке ниже схематично показаны процессы, протекающие в литий─ионном аккумуляторе при заряде и разряде.

Реакции, протекающие в Li-Ion аккумуляторе

Вернуться к содержанию 

Устройство литий─ионных аккумуляторов

По своему исполнению Li─Ion аккумуляторы выполняются в цилиндрическом и призматическом исполнении. Цилиндрическая конструкция представляет рулон электродов с сепараторным материалом для разделения электродов. Этот рулон помещён в корпус из алюминия или стали. С ним соединён минусовой электрод.

Положительный контакт выводится в виде контактной площадки на торец аккумулятора.

Цилиндрический литий─ионный аккумулятор

Li─Ion аккумуляторы призматической конструкции делаются с помощью укладывания пластин прямоугольной формы друг на друга. Такие батареи дают возможность сделать упаковку более плотной. Сложность заключается в поддержке сжимающего усилия на электродах. Есть призматические АКБ с рулонной сборкой электродов, скручиваемых в спираль.

Призматический литий─ионный аккумулятор

В конструкции любых литий─ионных аккумулятор предусмотрены меры для обеспечения их безопасной работы. В первую очередь это касается предотвращения разогрева и воспламенения. Под крышкой батареи устанавливается механизм, который увеличивает сопротивление аккумулятора при увеличении температурного коэффициента. При возрастании давления внутри АКБ выше допустимого предела, механизм разрывает положительный вывод и катод.

Кроме того, для увеличения безопасности эксплуатации в Li-Ion аккумуляторах в обязательном порядке используется электронная плата. Её назначение – это контроль за процессами заряда и разряда, исключение перегрева и короткого замыкания.

Сейчас выпускается много призматических литий─ионных аккумуляторов. Они находят применение в смартфонах и планшетах. Конструкция призматических батарей часто может отличаться у различных производителей, поскольку не имеет единой унификации. Электроды противоположной полярности разделяются сепаратором. Для его производства используется пористый полипропилен.

Конструкция Li-Ion и прочих разновидностей литиевых АКБ всегда выполняется герметичной. Это обязательное требование, поскольку вытекания электролита не допустимо. Если он вытечет, то электроника будет повреждена. Кроме того, герметичное исполнение не допускает попадания внутрь АКБ воды и кислорода. Если они попадут внутрь, то в результате реакции с электролитом и электродами разрушат аккумулятор. Производство комплектующих для литиевых аккумуляторов и их сборка находится в специальных сухих боксах в атмосфере аргона. При этом используются сложные приёмы сваривания, герметизации и т. п.

Что касается количества активной массы Li-Ion аккумулятора, то здесь производители всегда ищут компромисс. Им нужно добиться максимальной ёмкости и обеспечить безопасность функционирования. За основу принимается отношение:

Ао / Ап = 1,1, где

Ао – активная масса отрицательного электрода;

Ап — активная масса положительного электрода.

Такой баланс не допускает образование лития (чистого металла) и исключает возгорание.

Вернуться к содержанию 

Параметры Li-Ion аккумуляторов

Выпускаемые сегодня литий─ионные аккумуляторы имеют высокую удельную энергоёмкость и рабочее напряжение. Последнее в большинстве случаев составляет от 3,5 до 3,7 вольта. Энергоёмкость составляет от 100 до 180 ватт-час на килограмм или от 250 до 400 на литр. Некоторое время назад производители не могли выпустить АКБ с ёмкостью выше нескольких ампер-час. Сейчас проблемы, сдерживающие развитие в этом направлении, устранены. Так, что в продаже стали встречаться аккумуляторы литиевого типа с ёмкостью в несколько сотен ампер-час.

Литий-ионный аккумулятор

Ток разряда современных Li─Ion аккумуляторов составляет от 2С до 20С. Они работают в интервале температур окружающей среды от -20 до +60 Цельсия. Есть модели работоспособные при -40 Цельсия. Но сразу стоит сказать, что при отрицательных температурах работают специальные серии АКБ. Обычные литий─ионные батарейки для мобильных телефонов при отрицательных температурах становятся неработоспособными.

Саморазряд этого типа батарей равен 4─6 процента в течение первого месяца. Далее он уменьшается и в год составляет до процентов. Это значительно меньше, чем у никель─кадмиевых и никель─металлогидридных батарей. Срок службы примерно 400─500 циклов заряд-разряд.

Теперь поговорим об особенностях эксплуатации литий─ионных аккумуляторов.

Вернуться к содержанию 

Эксплуатация литий─ионных батарей

Зарядка Li─Ion аккумуляторов

Заряд литий─ионных АКБ обычно комбинированный. Сначала они заряжаются при постоянном токе величиной 0,2─1С пока не наберут напряжение 4,1─4,2 вольта. А затем зарядка ведётся при постоянном напряжении. Первая ступень продолжается примерно около часа, а вторая около двух. Чтобы зарядить аккумулятор быстрее, используется импульсный режим. Первоначально выпускались Li─Ion аккумуляторы с графитом и для них устанавливалось ограничение напряжения 4,1 вольта на одну банку. Дело в том, что при более высоком напряжении в элементе начинались побочные реакции, сокращающие срок эксплуатации этих аккумуляторов.

Постепенно эти минусы удалось устранить за счёт легирования графита различными добавками. Современные литий─ионные элементы без проблем заряжают до 4,2 вольта. Погрешность составляет 0,05 вольта на элемент. Существуют группы Li─Ion аккумуляторных батарей для военной и промышленной сферы, где требуется повышенная надёжность и длительный срок службы. Для таких АКБ выдерживают максимальное напряжение на элемент 3,90 вольта. У них несколько ниже энергетическая плотность, но увеличенный срок службы.

Если заряжать литий─ионную батарею током величиной 1С, то время полного набора ёмкости составит 2─3 часа. Аккумулятор считается полностью заряженным, когда напряжение возрастает до максимального, а ток снижается до 3 процентов от величины в начале процесса зарядки. Это можно видеть на графике ниже.

Зависимость тока заряда и напряжения Li─Ion аккумулятора при заряде

На графике ниже представлены этапы зарядки Li─Ion батареи.

Этапы зарядки литий─ионного аккумулятора

Процесс зарядки состоит из следующих этапов:
  • Этап 1. На этой стадии через аккумуляторную батарею течёт максимальный ток заряда. Он продолжается до момента достижения порогового напряжения;
  • Этап 2. При постоянном напряжении на АКБ ток зарядки постепенно уменьшается. Этот этап прекращается, когда величина тока уменьшается до 3 процентов от начального значения;
  • Этап 3. Если аккумулятор ставится на хранение, то на этом этапе идёт периодический заряд для компенсации саморазряда. Делается ориентировочно через каждые 500 часов.Из практики известно, что увеличение тока заряда не сокращает время зарядки батареи. При повышении тока напряжение растёт быстрее до порогового значения. Но тогда потом второй этап зарядки длится дольше. Некоторые зарядные устройства (ЗУ) могут зарядить Li─Ion аккумулятор за час. В таких ЗУ отсутствует второй этап, но реально аккумулятор в этой точке заряжается где-то на 70 процентов.

Что касается струйной подзарядки, то для литий─ионных батарей она неприменима. Это объясняется тем, что этот тип АКБ не может при перезарядке поглощать избыточную энергию. Струйная подзарядка может привести к переходу части ионов лития в металлическое состояние (валентность 0).

А непродолжительный заряд хорошо компенсирует саморазряд и потери электрической энергии. Зарядка на третьем этапе может делаться каждые 500 часов. Как правило, выполняется при снижении напряжения АКБ до 4,05 вольта на одном элементе. Заряд ведётся до поднятия напряжения до 4,2 вольта.

Стоит отметить слабую стойкость литий─ионных аккумуляторов к перезаряду. В результате подачи лишнего заряда на углеродной матрице (минусовой электрод) может начаться осаждение металлического лития. Он имеет очень высокую химическую активность и взаимодействует с электролитом. В результате на катоде начинается выделение кислорода, что грозит ростом давления в корпусе и разгерметизацией. Поэтому если вы заряжаете Li─Ion элемент в обход контроллера, не допускайте подъёма напряжения при заряде выше, чем рекомендует производитель батареи. Если постоянно перезаряжать аккумулятор, срок его службы сокращается.

Безопасности Li-Ion АКБ производители уделяют серьёзное внимание. Заряд прекращается при увеличении напряжения выше допустимого уровня. Также установлен механизм выключения заряда при увеличении температуры батареи выше 90 Цельсия. Некоторые современные модели батарей имеют в своей конструкции выключатель механического типа. Он срабатывает при росте давления внутри корпуса АКБ. Механизм контроля напряжения электронной платы отключает банку от внешнего мира по минимальному и максимальному напряжению.

Существуют литий─ионные батареи без защиты. Это модели, содержащие в своём составе марганец. Этот элемент при перезаряде способствует торможению металлизации лития и выделению кислорода. Поэтому в таких аккумуляторах защита становится не нужна.

Рекомендуем дополнительно прочитать материал о том, как правильно заряжать литий-ионные аккумуляторы.Вернуться к содержанию 

Хранение и разрядные характеристики литий─ионных АКБ

Аккумуляторы литиевого типа хранятся достаточно хорошо и саморазряд в год составляет всего 10─20% в зависимости от условий хранения. Но при этом деградация элементов батареи продолжается даже, если она не используется. Вообще, все электрические параметры литий─ионного аккумулятора могут отличаться для каждого конкретного экземпляра.

К примеру, напряжение при разряде меняется в зависимости от степени зарядки, тока, температуры окружающей среды и т. п. На срок эксплуатации АКБ оказывают влияние токи и режимы цикла разряд-заряд, температура. Один из главных недостатков Li-Ion батарей ─ это чувствительность к режиму заряд-разряд, из-за чего в них и предусматривается много разных видов защит.

На графиках ниже представлены разрядные характеристики литий─ионных аккумуляторов. На них рассмотрена зависимость напряжения от тока разряда и температуры окружающей среды.

Разрядные характеристики литий-ионного аккумулятора при разных разрядных токах

Разрядные характеристики литий-ионного аккумулятора при различных температурах

Как можно видеть, при увеличении разрядного тока падение ёмкости незначительно. Но при этом рабочее напряжение заметно уменьшается. Аналогичная картина наблюдается при температуре меньше 10 градусов Цельсия. Стоит также отметить начальную просадку напряжения аккумулятора.Вернуться к содержанию  
Безопасность

В целом к настоящему времени проблема защиты литий─ионных аккумуляторов уже решена. Электронная защита держит под контролем процесс заряда и разряда. К тому же постоянно дорабатывается материал катода, в том числе, в направлении термической стабильности.

Li-Ion аккумуляторы имеют встроенную защиту от внутреннего короткого замыкания. Некоторые категории АКБ также оснащают защитой от внешнего короткого замыкания. Внутренняя защита реализована в виде двухслойного сепаратора. Один слой выполнен из полипропилена, а второй из аналога полиэтилена. Если в результате появления литиевых дендритов происходит короткое замыкание, то этот второй слой из-за разогрева оплавляется. В результате он становится непроницаемым, что предотвращает дальнейший рост дендритов лития к положительному электроду.

Вернуться к содержанию 

Защита литий─ионных батарей

Выше мы несколько раз упоминали о защите Li─Ion аккумуляторов. Давайте, суммируем всю информацию.

В аккумуляторных батареях литиевого типа применяется полевой транзистор для размыкания цепи, когда напряжение банки возрастает до 4,3 вольта. Термическая защита разъединяет цепь при нагреве АКБ выше 90 градусов Цельсия. Ещё в литий─ионных батареях можно встретить предохранитель, срабатывающий при увеличении давления в корпусе до 1034 кПа. Также устанавливаются схемы, предохраняющие элемент от глубокого разряда. Их назначение – разорвать цепь при снижении напряжения элемента до 2,5 вольта.

Вернуться к содержанию 

Как функционирует защита АКБ?

Схема защиты литий─ионной аккумуляторной батареи при включённом телефоне имеет сопротивление 0,05─0,1 Ом. Это два ключа, которые соединены последовательно. Первый предназначен для срабатывания на верхнем, а второй ─ на нижнем значении напряжения АКБ. Сопротивление увеличивает в 2 раза внутреннее сопротивление АКБ. Аккумулятор отдаёт максимальный ток при низком внутреннем сопротивлении. Схема защиты сделана, как препятствие для бесконтрольного роста тока (как зарядки, так и разрядки) аккумулятора.

Также схема защиты может быть реализована с помощью химических добавок. Для этого используется марганец. В таких АКБ вместо схемы защиты ставится только предохранитель. И всё это не сказывается на безопасности. Марганец не даёт аккумулятору перегреться и воспламениться. В результате отказа от электронной схемы снижается цена литий─ионных батарей, но это порождает другую проблему. Такую АКБ пользователь может заряжать «неродной» зарядкой. И в этом случае может случиться так, что ЗУ не остановит процесс при полной зарядке. Тогда без схемы пойдёт перезаряд и выход аккумулятора из строя. Такие вещи заканчиваются вздутием корпуса.

Вернуться к содержанию 

Деградация Li─Ion аккумуляторов

Из-за чего происходит деградация Li-Ion аккумуляторов и какие факторы приводят к снижению ёмкости? Это:

  • расслоение графитовой матрицы;
  • разрушение структуры катода;
  • образование частиц металлического лития;
  • появление пассивирующей плёнки на электродах. Она снижает поверхностную активность;
  • разрушение механической структуры электрода из-за изменений объёма электродов при заряде-разряде.

Специалисты до сих пор не пришли к единому мнению насчёт того, какой электрод (катод или анод) больше изменяется при эксплуатации. На конечный результат влияет материал электрода, а также его чистота. Заявленный ресурс современных литий─ионных аккумуляторов составляет от 500 до 1 тысячи циклов разряд-заряд до снижения ёмкости на 20 процентов. Но результат сильно зависит от значения напряжения при заряде. Результаты исследований специалистов показали следующие результаты.

Зависимость ёмкости литий-ионного аккумулятора при различном пороговом напряжении заряда

Стоит отметить, что при уменьшении «амплитуды циклирования» увеличивается срок эксплуатации. Что это значит? То есть, не нужно разряжать телефон до выключения и заряжать его до 100%. Благодаря этому уменьшается механическая нагрузка на электроды, которая вызвана изменением объёма из-за внедрения ионов лития. Чем глубже разряд и полнее заряд, тем большие механические напряжения испытывают электроды.

Вернуться к содержанию 

Перспективы развития литий─ионных аккумуляторных батарей

Литий─ионные аккумуляторы уже превратились в полноценное семейство батарей, как щелочные или автомобильные. От остальных групп АКБ они выделяются своей высокой энергоёмкостью, режимами заряд-разряд и рядом других характеристик. Их эксплуатация требует использования электронных схем контроля заряда-разряда и некоторых других средств защиты.

В случае с литиевыми аккумуляторами задача их безопасного использования усложняется требованиями к габаритам. Они должны быть максимально компактными, поскольку используются в портативной электронике. Из-за близкого расположения электродов и стремления добиться максимальной удельной ёмкости литий─ионные аккумуляторы долго не могли вывести на рынок для коммерческого использования.

Сейчас активно ведутся разработки новых материалов для электродов. Причём при использовании нового материала проходит долгое время до того момента, как его удаётся внедрить в серийное производство.

На рынке наблюдается довольно большой разброс литиевых батарей по электрическим характеристикам, габаритам и т. п. Отчасти это происходит из-за того, что пока нет единых стандартов в этом направлении. Кроме того, рынок наводнила продукция из Китая и других стран азиатского региона. Эти производители зачастую не придерживаются никаких норм, стараясь выпустить максимально доступные аккумуляторы.

Куда будет двигаться разработка литий─ионных аккумуляторов? Специалисты в этой сфере считают, что основное направление развития для них – это «умные аккумуляторы». Этот тренд сейчас явно прослеживания в различных электронных устройствах. То есть, идентификация батареи, степень заряженности, допустимое напряжение, температура – всем этим АКБ должна обмениваться с мобильным устройством.

Кроме того, усовершенствование литий─ионных аккумуляторов будет вестись в направлении уменьшения размеров, увеличения энергоёмкости, более гибкие решения в плане формы и т. п. Также работы ведутся в направлении разработки материалов для катода на базе соединений лития. Их цель – создание моделей литиевых АКБ, способных заменить никель─кадмиевые аккумуляторы в устройствах, потребляющих большой ток (портативный электроинструмент).

Надеемся, что эта статья помогла вам разобраться в особенностях литий─ионных аккумуляторов. Если материал был полезен, то делайте репост в социальных сетях. Голосуйте в опросе ниже и оценивайте статью! Если остались вопросы и дополнения, пишите их в комментариях.Вернуться к содержанию

akbinfo.ru


Смотрите также