Свинцово-кислотный аккумулятор. Автомобильный аккумулятор свинцово кислотный


Свинцово-кислотный аккумулятор — Википедия

Свинцо́во-кисло́тный аккумуля́тор — тип аккумуляторов, изобретен в 1859 году французским физиком Гастоном Планте. Основные области применения: стартерные аккумуляторные батареи в транспортных средствах, аварийные источники электроэнергии, резервные источники энергии.

Свинцовый аккумулятор изобрёл в 1859—1860 годах Гастон Планте, сотрудник лаборатории Александра Беккереля[1]. В 1878 году Камилл Фор усовершенствовал его конструкцию, предложив покрывать пластины аккумулятора свинцовым суриком.

Принцип работы свинцово-кислотных аккумуляторов основан на электрохимических реакциях свинца и диоксида свинца в водном растворе серной кислоты.

При подключении к электродам аккумулятора внешней нагрузки начинается электрохимическая реакция взаимодействия оксида свинца и серной кислоты, при этом металлический свинец окисляется до сульфата свинца (в классическом варианте аккумулятора). Проведенные в СССР исследования показали, что при разряде аккумулятора протекает как минимум ~60 различных реакций, порядка 20 из которых протекают без участия кислоты электролита[2].

Во время разряда происходит восстановление диоксида свинца на катоде[2][3] и окисление свинца на аноде. При заряде протекают обратные реакции. При перезаряде аккумулятора, после исчерпания сульфата свинца начинается электролиз воды, при этом на аноде (положительный электрод) выделяется кислород, а на катоде — водород.

Электрохимические реакции (слева направо — при разряде, справа налево — при заряде):

PbO2+SO42−+4H++2e−⇆PbSO4+2h3O{\displaystyle PbO_{2}+SO_{4}^{2-}+4H^{+}+2e^{-}\leftrightarrows PbSO_{4}+2H_{2}O} Pb+SO42−−2e−⇆PbSO4{\displaystyle Pb+SO_{4}^{2-}-2e^{-}\leftrightarrows PbSO_{4}}

При разряде аккумулятора из электролита расходуется серная кислота и выделяется относительно более лёгкая вода, плотность электролита падает. При заряде происходит обратный процесс. В конце заряда, когда количество сульфата свинца на электродах снижается ниже некоторого критического значения, начинает преобладать процесс электролиза воды. Газообразные водород и кислород выделяются из электролита в виде пузырьков — так называемое «кипение» при перезаряде. Это нежелательное явление, при заряде его следует по возможности избегать, так как при этом вода необратимо расходуется, нарастает плотность электролита и есть риск взрыва образующихся газов. Потери воды в результате электролиза восполняют доливкой в банки аккумулятора дистиллированной воды. Необходимо помнить, что вода, попадающая в концентрированную серную кислоту, закипает и сильно разбрызгивает кислотные капли.

Элемент свинцово-кислотного аккумулятора состоит из электродов и разделительных пористых пластин, изготовленных из материала, не взаимодействующего с кислотой, препятствующих замыканию электродов (сепараторов), которые погружены в электролит. Электроды представляют собой плоские решётки из металлического свинца. В ячейки этих решёток запрессованы порошки диоксида свинца (PbO2) — в анодных пластинах и металлического свинца — в катодных пластинах. Применение порошков увеличивает поверхность раздела электролит — твердое вещество, тем самым увеличивает электрическую ёмкость аккумулятора.

Электроды вместе с сепараторами погружены в электролит, представляющий собой водный раствор серной кислоты. Для приготовления раствора кислоты применяют дистиллированную воду.

Электрическая проводимость электролита зависит от концентрации серной кислоты и при комнатной температуре максимальна при плотности электролита 1,23 г/см³. Чем больше проводимость электролита, тем меньше внутреннее сопротивление аккумулятора, и, соответственно, ниже потери энергии на нём. Однако, на практике в районах с холодным климатом применяются и более высокие концентрации серной кислоты, до 1,29−1,31 г/см³, это связано с тем, что при низких концентрациях электролит может замёрзнуть, а при замерзании образуется лёд, который может разорвать банки аккумулятора.

Существуют экспериментальные разработки аккумуляторов, где свинцовые решетки заменяют пластинами из переплетённых нитей углеродного волокна, покрытых тонкой свинцовой пленкой. При этом используется меньшее количество свинца, распределённого по большой площади, что позволяет изготовить аккумулятор не только компактным и лёгким, при прочих равных параметрах, но и значительно более эффективным — помимо большего КПД, заряжается значительно быстрее традиционных аккумуляторов[4].

В аккумуляторах, применяемых в бытовых ИБП, систем охранной сигнализации и др. жидкий электролит загущают водным щелочным раствором силикатов натрия (Na2Si2O4) до пастообразного состояния.

Электрические и эксплуатационные параметры[править | править код]

  • Удельная предельная теоретическая энергоёмкость (Вт·ч/кг): около 133.
  • Удельная энергоёмкость (Вт·ч/кг): 30—60.
  • Теоретическая удельная энергоплотность (Вт·ч/дм³): 1250[5].
  • ЭДС одного элемента заряжённого аккумулятора = 2,11—2,17 В, рабочее напряжение 2 В (3 или 6 секций в итоге дают стандартные 6 В или 12 В соответственно)[2].
  • Напряжение полностью разряженного аккумулятора = 1,75—1,8 В (на 1 элемент). Ниже разряжать их нельзя[2].
  • Рабочая температура: от −40 °C до +40 °C.
  • КПД: порядка 80—90 %.
  • Номинальная ёмкость, показывает количество электричества, которое может отдать данный аккумулятор. Обычно указывается в ампер-часах, и измеряется при разряде малым током (1/20 номинальной ёмкости, выраженной в А·ч)[6].
  • Стартерный ток (для автомобильных аккумуляторов). Характеризует способности отдавать сильные токи при низких температурах. В большинстве случаев измеряется при −18 °C (0 °F) в течение 30 секунд. Различные методики замера отличаются (главным образом, допускаемым конечным напряжением) поэтому дают различные результаты[7].
  • Резервная ёмкость (для автомобильных аккумуляторов) — характеризует время, в течение которого аккумулятор может отдавать ток 25 А до конечного напряжения 10,5 В согласно ГОСТ Р 53165-2008[8].
Ареометр может быть использован для проверки плотности электролита в каждом отдельном элементе

При эксплуатации «обслуживаемых» аккумуляторов (с открываемыми пробками на банках) на автомобиле при движении по неровной дороге неизбежно происходит просачивание электролита из-под пробок на корпус аккумулятора. Через электропроводную не высыхающую, из-за гигроскопичности, пленку электролита происходит постепенный саморазряд аккумулятора. Во избежание глубокого саморазряда необходимо периодически нейтрализовать электролит протиранием корпуса аккумулятора, например, слабым раствором пищевой соды или разведенным в воде до консистенции жидкой сметаны хозяйственным мылом. Кроме того, особенно в жаркую погоду, происходит испарение воды из электролита; количество воды в электролите также уменьшается при перезаряде за счёт электролита, что увеличивает его плотность, увеличивая напряжение на аккумуляторе. При существенной потере воды уровень электролита в банках может упасть ниже верха электродов, что снижает ёмкость. Поэтому необходимо следить за уровнем электролита и при необходимости доливать дистиллированную воду.

Эти меры вместе с проверкой автомобиля на паразитную утечку тока в его электрооборудовании и периодической подзарядкой аккумулятора могут существенно продлить срок эксплуатации аккумуляторной батареи.

Работа свинцово-кислотного аккумулятора при низких температурах[править | править код]

По мере снижения окружающей температуры параметры аккумулятора ухудшаются, однако, в отличие от прочих типов аккумуляторов, у свинцово-кислотных аккумуляторов это снижение относительно мало, что и обуславливает их широкое применение на транспорте. Эмпирически считается, что свинцово-кислотный аккумулятор теряет ~1 % ёмкости при снижении температуры на каждый градус от +20 °C. То есть, при температуре −30 °C свинцово-кислотный аккумулятор будет иметь 50 % ёмкости.

Снижение ёмкости и токоотдачи при низких температурах обусловлено, в первую очередь, ростом вязкости электролита. При этом ухудшается омывание электродов свежими порциями электролита, и концентрация серной кислоты в непосредственной близости от них снижается.

Разряженный аккумулятор в мороз может раздуться из-за замерзания электролита низкой плотности (близкой к 1,10 г/см3) и образования кристаллов льда, что приводит к необратимому повреждению свинцовых пластин внутри аккумулятора.

Низкие температуры электролита негативно влияют на работоспособность и зарядно-разрядные характеристики аккумулятора[9]:

  • при температуре от 0 °C до −10 °C снижение зарядных и разрядных характеристик несущественно влияют на работоспособность аккумулятора;
  • при температуре от −10 °C до −20 °C происходит снижение тока в стартерном режиме и ухудшение заряда;
  • при температуре ниже −20 °C аккумуляторные батареи не обеспечивают надежного пуска двигателя и не способны принимать заряд от генератора.

Из-за большего внутреннего сопротивления, присущего современным аккумуляторам закрытого типа (т. н. «необслуживаемым», герметичным, герметизированным) при низких температурах по сравнению с обычными аккумуляторами (открытого типа), для них эти вопросы ещё более актуальны[10].

Для эксплуатации транспортных средств при очень низких температурах предназначены конструкции аккумулятора с внутренним электроподогревом[11].

Хранение[править | править код]

Свинцово-кислотные аккумуляторы следует хранить только в заряженном состоянии. При температуре ниже −20 °C подзаряд аккумуляторов должен проводиться постоянным напряжением 2,45 В/элемент 1 раз в год в течение 48 часов. При комнатной температуре — 1 раз в 8 месяцев постоянным напряжением 2,35 В/элемент в течение 6—12 часов. Хранение аккумуляторов при температуре выше 30 °C не рекомендуется.

Слой грязи, солей и плёнки электролита на поверхности корпуса аккумулятора создаёт проводник для тока между электродами и приводит к саморазряду аккумулятора, при глубоком разряде начинается преждевременная сульфатация пластин, и поэтому поверхность аккумулятора необходимо поддерживать в чистоте. Хранение свинцово-кислотных аккумуляторов в разряженном состоянии приводит к быстрой потере их работоспособности.

При длительном хранении аккумуляторов и разряде их большими токами (в стартерном режиме), или при уменьшении ёмкости аккумуляторов, нужно проводить контрольно-тренировочные циклы, то есть разряд-заряд токами номинальной величины.

При подготовке аккумуляторной батареи к зимнему хранению, что актуально для автомобилей не эксплуатируемых в холодное время года специалисты старейшей лаборатории НИИАЭ рекомендуют следующие действия:

1. Правильно и до конца зарядите аккумуляторную батарею. 2. Нанесите на положительный вывод АКБ пластичную смазку (литол, солидол и т. п.), так как плёнка электролита способна абсорбировать влагу из атмосферы, что может приводить к повышенному саморазряду. 3. Хранить аккумуляторы на холоде, так как при низких температурах саморазряд намного ниже. Электролит полностью заряженного аккумулятора начинает замерзать при температуре ниже −55 С.

В случае необходимости поездки в морозы следует перенести аккумулятор в отапливаемое помещение и в течение 7—9 часов (например, за ночь) он придёт в пригодное для пуска двигателя состояние.

Износ свинцово-кислотных аккумуляторов[править | править код]

При использовании технической серной кислоты и недистиллированной воды ускоряются саморазряд, сульфатация, разрушение пластин и уменьшение ёмкости аккумуляторной батареи[12].

При химических реакциях в аккумуляторе образуется плохо растворимое вещество — сульфит свинца PbSO3, осаждающийся на пластинах и который образует диэлектрический слой между электролитом и активной массой. Это один из факторов, снижающих срок службы свинцово-кислотной аккумуляторной батареи.

Основными процессами износа свинцово-кислотных аккумуляторов являются:

  • сульфатация пластин[2], заключающаяся в образовании крупных кристаллов сульфата свинца, который препятствует протеканию обратимых токообразующих процессов;
  • коррозия электродов, то есть электрохимические процессы окисления и растворения материала электродов в электролите, что вызывает осыпание материала электродов;
  • слабая механическая прочность или плохое сцепление активной массы с электродными решётками, что приводит к опаданию активной массы[2][13];
  • оползание и осыпание активной массы положительных электродов, связанное с разрыхлением, нарушением однородности[2].

Хотя батарею, вышедшую из строя по причине физического разрушения пластин, в домашних условиях восстановить нельзя, в литературе описаны химические растворы и прочие способы, позволяющие «десульфатировать» пластины. Простой, но чреватый полным отказом аккумулятора способ предполагает использование раствора сульфата магния[2]. Раствор сульфата магния заливается в секции, после чего батарею разряжают и заряжают несколько раз. Сульфат свинца и прочие остатки химической реакции осыпаются при этом на дно банок, это может привести к замыканию элемента, поэтому обработанные банки желательно промыть и заполнить новым электролитом номинальной плотности. Это позволяет несколько продлить срок использования устройства.

Кодовый символ, указывающий на то, что свинцовые батареи могут быть вторично переработаны

Вторичная переработка для этого вида аккумуляторов играет важную роль, так как свинец, содержащийся в аккумуляторах, является токсичным тяжёлым металлом и наносит серьёзный вред при попадании в окружающую среду. Свинец и его соли должны быть переработаны для возможности его вторичного использования.

Свинец из изношенных аккумуляторов используется для кустарной переплавки, например, при изготовлении грузил рыболовных снастей, охотничьей дроби или гирь. Для безопасности из аккумулятора следует слить электролит, для нейтрализации его остатков банки заливаются раствором пищевой соды, после чего корпус батареи разрушают и извлекают свинцовые электроды, клеммы и перемычки банок. У электродов в переплавку годится только их каркас в виде решётки, прессованная в них рассыпчатая масса - смесь соединений Pb, а не металл. Перемычки и клеммы аккумулятора могут быть переплавлены целиком.[источник не указан 391 день] Кустарное извлечение свинца из аккумуляторов серьезно вредит как окружающей среде, так и здоровью плавильщиков, поскольку свинец и его соединения с парами и дымом разносятся по всей округе[14][15].

  1. ↑ Bertrand Gille Histoire des techniques. — Gallimard, coll. «La Pléiade», 1978, (ISBN 978-2070108817).
  2. ↑ 1 2 3 4 5 6 7 8 Свинцовые аккумуляторы. Эксплуатация: Правда и вымыслы.
  3. ↑ Н. Ламтев. Самодельные аккумуляторы. Москва: Государственное издательство по вопросам радио, 1936 год.
  4. ↑ http://auto.lenta.ru/news/2006/12/19/battery/ Американцы облегчили и уменьшили аккумуляторы
  5. ↑ Расчет идеального свинцового аккумулятора.
  6. ↑ ГОСТ 26881-86 Методика проверки свинцовых аккумуляторов
  7. ↑ Краткий аналитический обзор существующих способов оценки ёмкости ХИТ и приборов, реализующих эти способы
  8. ↑ ГОСТ Р 53165-2008: Батареи аккумуляторные свинцовые стартерные для автотракторной техники. Общие технические условия
  9. ↑ Руководство, 1983, с. 70.
  10. ↑ Железнодорожный транспорт. — 2011. № 12. — c.35.
  11. ↑ Руководство, 1983, с. 21-23.
  12. ↑ Вредные добавки к электролиту свинцовых аккумуляторов
  13. ↑ О противоречиях в теории работы свинцового кислотного аккумулятора к. т. н., проф. Кочуров А. А. Рязанский военный автомобильный институт
  14. ↑ Отравление свинцом | ProfMedik Медицинский Портал (рус.). profmedik.ru (22 февраля 2016). Проверено 4 февраля 2017.
  15. ↑ Кочуров. http://echemistry.ru/assets/files/books/hit/statya-o-protivorechiyah-v-teorii-raboty-svincovogo-kislotnogo-akkumulyatora.pdf (рус.). Новости. Первоуральск.Ru (17 июля 2014). Проверено 4 февраля 2017.
  • Каштанов В. П., Титов В. В., Усков А. Ф. и др. Свинцовые стартерные аккумуляторные батареи. Руководство.. — М.: Воениздат, 1983. — 148 с.

ru.bywiki.com

Свинцово-кислотный аккумулятор — WiKi

История

Принцип действия

Принцип работы свинцово-кислотных аккумуляторов основан на электрохимических реакциях свинца и диоксида свинца в водном растворе серной кислоты.

При подключении к электродам аккумулятора внешней нагрузки начинается электрохимическая реакция взаимодействия оксида свинца и серной кислоты, при этом металлический свинец окисляется до сульфата свинца (в классическом варианте аккумулятора). Вообще говоря, электрохимические процессы в аккумуляторе сложны. Проведенные в СССР исследования показали, что при разряде аккумулятора протекает как минимум ~60 различных реакций, порядка 20 из которых протекают без участия кислоты электролита (нехимические реакции)[1]

Во время разряда происходит восстановление диоксида свинца на катоде[1][2] и окисление свинца на аноде. При заряде протекают обратные реакции. При перезаряде аккумулятора, после исчерпания сульфата свинца начинается электролиз воды, при этом на аноде (положительный электрод) выделяется кислород, а на катоде (отрицательный электрод) — водород.

Электрохимические реакции (слева направо — при разряде, справа налево — при заряде):

PbO2+SO42−+4H++2e−⇆PbSO4+2h3O{\displaystyle PbO_{2}+SO_{4}^{2-}+4H^{+}+2e^{-}\leftrightarrows PbSO_{4}+2H_{2}O}  Pb+SO42−−2e−⇆PbSO4{\displaystyle Pb+SO_{4}^{2-}-2e^{-}\leftrightarrows PbSO_{4}} 

При разряде аккумулятора из электролита расходуется серная кислота и выделяется относительно более лёгкая вода, плотность электролита падает. При заряде происходит обратный процесс. В конце заряда, когда количество сульфата свинца на электродах снижается ниже некоторого критического значения, начинает преобладать процесс электролиза воды. Газообразные водород и кислород выделяются из электролита в виде пузырьков — так называемое «кипение» при перезаряде. Это нежелательное явление, при заряде его следует по возможности избегать, так как при этом вода необратимо расходуется, нарастает плотность электролита и есть риск взрыва образующихся газов. Потери воды в результате электролиза восполняют доливкой в банки аккумулятора дистиллированной воды. Необходимо помнить, что вода, попадающая в концентрированную серную кислоту, закипает и сильно разбрызгивает кислотные капли.

Устройство

Элемент свинцово-кислотного аккумулятора состоит из электродов (положительных и отрицательных) и разделительных пористых пластин, изготовленных из материала, не взаимодействующего с кислотой, препятствующих замыканию электродов (сепараторов), которые погружены в электролит. Электроды представляют собой плоские решётки из металлического свинца. В эти решётки запрессованы порошки диоксида свинца (PbO2) — в анодных пластинах и металлического свинца — в катодных пластинах. Применение порошков увеличивает поверхность раздела электролит — твердое вещество, тем самым увеличивает электрическую ёмкость аккумулятора.

В современных аккумуляторах электродные решётки изготавливаются не из чистого свинца, а из сплава свинца с сурьмой с содержанием её 1—2 % для повышения прочности и эксплуатационных характеристик. Иногда в сплав добавляют металлический кальций для изготовления анодных и катодных электродных решёток или только для анодных решёток. Добавление кальция имеет как преимущества, так и недостатки: например, у аккумулятора с пластинами, легированными кальцием, при глубоких разрядах существенно и необратимо снижается ёмкость.

Электроды вместе с сепараторами погружены в электролит, представляющий собой водный раствор серной кислоты (h3SO4). Соли кальция и магния (соли жесткости), всегда присутствующие в обычной воде, ухудшают параметры аккумулятора и снижают срок его службы. Поэтому для приготовления раствора кислоты применяют дистиллированную воду.

Электрическая проводимость электролита зависит от концентрации серной кислоты и при комнатной температуре максимальна при плотности электролита 1,23 г/см³. Чем больше проводимость электролита, тем меньше внутреннее сопротивление аккумулятора, и, соответственно, ниже потери энергии на нем. Однако, на практике в районах с холодным климатом применяются и более высокие концентрации серной кислоты, до 1,29−1,31 г/см³, это связано с тем, что при низких концентрациях электролит может замёрзнуть, а при замерзании образуется лёд, который может разорвать банки аккумулятора.

Существуют экспериментальные разработки аккумуляторов, где свинцовые решетки заменяют пластинами из переплетённых нитей углеродного волокна, покрытых тонкой свинцовой пленкой. При этом используется меньшее количество свинца, распределённого по большой площади, что позволяет изготовить аккумулятор не только компактным и лёгким, при прочих равных параметрах, но и значительно более эффективным — помимо большего КПД, заряжается значительно быстрее традиционных аккумуляторов[3].

В аккумуляторах, применяемых в бытовых ИБП, систем охранной сигнализации и др. жидкий электролит сгущают водным щелочным раствором силикатов натрия (Na2Si2O4) до пастообразного состояния.

Электрические и эксплуатационные параметры

  • Удельная предельная теоретическая энергоёмкость (Вт·ч/кг): около 133.
  • Удельная энергоёмкость (Вт·ч/кг): 30-60.
  • Теоретическая удельная энергоплотность (Вт·ч/дм³): 1250[4].
  • ЭДС заряжённого аккумулятора = 2,11—2,17 В, рабочее напряжение 2 В (3 или 6 секций в итоге дают стандартные 6 В или 12 В соответственно)[1].
  • Напряжение полностью разряженного аккумулятора = 1,75—1,8 В (из расчета на 1 элемент). Ниже разряжать их нельзя[1].
  • Рабочая температура: от −40 °C до +40 °C.
  • КПД: порядка 80—90 %.

Эксплуатационные характеристики

  • Номинальная ёмкость, показывает количество электричества, которое может отдать данный аккумулятор. Обычно указывается в ампер-часах, и измеряется при разряде малым током (1/20 номинальной ёмкости, выраженной в А·ч).[5]
  • Стартерный ток (для автомобильных аккумуляторов). Характеризует способности отдавать сильные токи при низких температурах. В большинстве случаев замеряется при −18 °C (0 °F) в течение 30 секунд. Различные методики замера отличаются (главным образом, допускаемым конечным напряжением) поэтому дают различные результаты.[6]
  • Резервная ёмкость (для автомобильных аккумуляторов). Характеризует время, в течение которого аккумулятор может отдавать ток 25 А до конечного напряжения 10,5 В согласно ГОСТ Р 53165-2008.[7]

Эксплуатация

  Ареометр может быть использован для проверки плотности электролита каждой секции.

При эксплуатации «обслуживаемых» аккумуляторов (с открываемыми пробками на банках) на автомобиле при движении по неровной дороге неизбежно происходит просачивание электролита из-под пробок на корпус аккумулятора. Через электропроводную невысыхающую пленку электролита происходит саморазряд аккумулятора. Во избежание сильного саморазряда необходимо периодически нейтрализовывать электролит протиранием корпуса, например, слабым раствором пищевой соды или разведенным в воде до консистенции жидкой сметаны хозяйственным мылом. Кроме того, особенно в жаркую погоду, происходит испарение воды из электролита; количество воды в электролите также уменьшается при перезаряде за счёт электролиза, что увеличивает его плотность, увеличивая напряжение на аккумуляторе. При существенной потере воды уровень электролита в банках может упасть ниже верха электродов, что снижает ёмкость. Поэтому необходимо следить за уровнем электролита и при необходимости доливать дистиллированную воду.

Эти меры вместе с проверкой автомобиля на паразитную утечку тока в его электрооборудовании и периодической подзарядкой аккумулятора могут существенно продлить срок эксплуатации аккумуляторной батареи.

Работа свинцово-кислотного аккумулятора при низких температурах

По мере снижения окружающей температуры параметры аккумулятора ухудшаются, однако, в отличие от прочих типов аккумуляторов, у свинцово-кислотных аккумуляторов это снижение относительно мало, что и обуславливает их широкое применение на транспорте. Эмпирически считается, что свинцово-кислотный аккумулятор теряет ~1 % ёмкости при снижении температуры на каждый градус от +20 °C. То есть, при температуре −30 °C свинцово-кислотный аккумулятор будет иметь 50 % ёмкости.

Снижение ёмкости и токоотдачи при низких температурах обусловлено, в первую очередь, ростом вязкости электролита. При этом ухудшается омывание электродов свежими порциями электролита, и концентрация серной кислоты в непосредственной близости от них снижается.

Разряженный аккумулятор в мороз может раздуться из-за замерзания электролита низкой плотности (близкой к 1.10) и образования льда, что приводит к необратимому повреждению свинцовых пластин внутри аккумулятора.

Низкие температуры электролита негативно влияют на работоспособность и зарядно-разрядные характеристики аккумулятора[8]:

  • при температуре от 0 °C до -10 °C снижение зарядных и разрядных характеристик влияют не существенно на работоспособность аккумулятора;
  • при температуре от -10 °C до -20 °C происходит снижение отдаваемой мощности в стартерном режиме и ухудшение заряда;
  • при температуре ниже -20 °C аккумуляторные батареи не обеспечивают надежного пуска двигателя и не способны принимать заряд от генератора.

Из-за большего внутреннего сопротивления, присущего современным аккумуляторам закрытого типа (т. н. «необслуживаемым», герметичным, герметизированным) при низких температурах по сравнению с обычными аккумуляторами (открытого типа), для них эти вопросы ещё более актуальны[9].

Для эксплуатации транспортных средств при низких температурах предназначены конструкции аккумулятора с внутренним электроподогревом[10].

Хранение

Свинцово-кислотные аккумуляторы следует хранить только в заряженном состоянии. При температуре ниже −20 °C подзаряд аккумуляторов должен проводиться постоянным напряжением 2,45 В/элемент 1 раз в год в течение 48 часов. При комнатной температуре — 1 раз в 8 месяцев постоянным напряжением 2,35 В/элемент в течение 6-12 часов. Хранение аккумуляторов при температуре выше 30 °C не рекомендуется.

Слой грязи и солей на поверхности корпуса аккумулятора создаёт проводник для тока между электродами и приводит к саморазряду аккумулятора, при глубоком разряде начинается преждевременная сульфатация пластин, и поэтому поверхность аккумулятора необходимо поддерживать в чистоте. Хранение свинцово-кислотных аккумуляторов в разряженном состоянии приводит к быстрой потере их работоспособности.

При длительном хранении аккумуляторов и разряде их большими токами (в стартерном режиме), или при уменьшении ёмкости аккумуляторов, нужно проводить контрольно-тренировочные циклы, то есть разряд-заряд токами номинальной величины.

При подготовке аккумуляторной батареи к зимнему хранению, что актуально для автомобилей не эксплуатируемых в холодное время года специалисты старейшей лаборатории НИИАЭ рекомендуют следующие действия:

1. Правильно и до конца зарядите аккумуляторную батарею; 2. Нанесите на положительный вывод АКБ пластичную смазку (литол, солидол и т. п.), так как «+» борн способен абсорбировать влагу из атмосферы, что может приводить к повышенному саморазряду; 3. Оставить на холоде, так как при низких температурах саморазряд намного ниже. Электролит полностью заряженного аккумулятора начинает замерзать при температуре ниже −55 С;

В случае необходимости поездки зимой — перенесите аккумулятор в отапливаемое помещение и в течение 7—9 часов (например, за ночь) он придёт в пригодное для использования состояние.

Износ свинцово-кислотных аккумуляторов

При использовании технической серной кислоты и не дистиллированной воды ускоряются саморазряд, сульфатация, разрушение пластин и уменьшение ёмкости аккумуляторной батареи[11].

При реакциях в аккумуляторе образуется нерастворимое вещество — сульфит свинца PbSO3, осаждающийся на пластинах, который образует диэлектрический слой между токоотводами и активной массой. Это один из факторов, влияющий на срок службы свинцово-кислотной аккумуляторной батареи.

Основными процессами износа свинцово-кислотных аккумуляторов являются:

  • сульфатация пластин[1], заключающаяся в образовании крупных кристаллитов сульфата свинца, который препятствует протеканию обратимых токообразующих процессов;
  • коррозия электродов, то есть электрохимические процессы окисления и растворения материала электродов в электролите, что вызывает осыпание материала электродов;
  • слабая механическая прочность или плохое сцепление активной массы с электродными решётками, что приводит к опаданию активной массы[1][12];
  • оползание и осыпание активной массы положительных электродов, связанное с разрыхлением, нарушением однородности[1].

Хотя батарею, вышедшую из строя по причине физического разрушения пластин, в домашних условиях отремонтировать нельзя, в литературе описаны химические растворы и прочие способы, позволяющие «десульфатировать» пластины. Простой, но чреватый полным отказом аккумулятора способ предполагает использование раствора сульфата магния[1]. Раствор сульфата магния заливается в секции, после чего батарею разряжают и заряжают несколько раз. Сульфат свинца и прочие остатки химической реакции осыпаются при этом на дно банок, это может привести к замыканию элемента, поэтому обработанные банки желательно промыть и заполнить новым электролитом номинальной плотности. Это позволяет несколько продлить срок использования устройства.

Вторичная переработка

  Кодовый символ, указывающий на то, что свинцовые батареи могут быть вторично переработаны.

Вторичная переработка для этого вида аккумуляторов играет важную роль, так как свинец, содержащийся в аккумуляторах, является токсичным тяжёлым металлом и наносит серьёзный вред при попадании в окружающую среду. Свинец и его соли должны быть переработаны на специальных предприятиях для возможности его вторичного использования.

Свинец из изношенных аккумуляторов часто используется для кустарной переплавки, например, при изготовлении грузил рыболовных снастей, охотничьей дроби или гирь. Для безопасности из аккумулятора следует слить электролит, для нейтрализации его остатков банки заливаются раствором какого-либо безвредного основания (например, питьевой соды), после чего корпус батареи разрушают и извлекают свинцовые электроды, клеммы и перемычки банок. У электродов в переплавку годится только их каркас в виде решётки, напрессованная на них рассыпчатая масса - это смесь соединений Pb, а не металл. Перемычки и клеммы аккумулятора могут быть переплавлены целиком.[источник не указан 99 дней] Кустарная переплавка серьезно вредит как окружающей среде, так и здоровью плавильщиков, поскольку свинец и его соединения с парами и дымом разносятся по всей округе.[13][14]

См. также

Примечания

Ссылки

Литература

  • Каштанов В. П., Титов В. В., Усков А. Ф. и др. Свинцовые стартерные аккумуляторные батареи. Руководство.. — М.: Воениздат, 1983. — 148 с.

ru-wiki.org

Обслуживание свинцово-кислотных аккумуляторных батарей — "ВАЖНО ВСЕМ"

Современные свинцово-кислотные аккумуляторные батареи являются надёжными устройствами  и обладают значительными сроками эксплуатации. Батареи хорошего качества имеют срок службы не менее пяти лет при условии тщательного и своевременного ухода. Поэтому мы рассмотрим правила эксплуатации аккумуляторов и методы регулярного технического обслуживания, которые позволят существенно повысить их ресурс при минимальных затратах времени и финансов.

 

ОБЩИЕ ПРАВИЛА ЭКСПЛУАТАЦИИ АККУМУЛЯТОРНЫХ БАТАРЕЙ

 

Аккумуляторную батарею в процессе эксплуатации необходимо периодически осматривать на наличие трещин корпуса, содержать в чистоте и в заряженном состоянии. Загрязнение поверхности аккумулятора, наличие окислов или грязи на штырях, а также неплотная затяжка зажимов проводов вызывают быстрый разряд аккумуляторной батареи и препятствуют нормальному её заряду. Во избежание этого следует:

  • Содержать в чистоте поверхность аккумулятора и следить за степенью затяжки контактных клемм. Электролит, попавший на поверхность батареи, вытирать сухой ветошью или ветошью, смоченной в нашатырном спирте или растворе кальцинированной соды (10%-ный раствор). Окислившиеся контактные штыри аккумуляторной батареи и клеммы проводов очистить, неконтактные поверхности смазать техническим вазелином или солидолом.
  • Следить за чистотой дренажных отверстий аккумулятора. В процессе работы электролит выделяет пары, и при забивании дренажных отверстий эти пары выделяются в других всевозможных местах. Как правило, это происходит около контактных штырей аккумуляторной батареи, что приводит к усиленному их окислению. При необходимости очистить их.
  • Периодически проверять напряжение на контактных штырях аккумуляторной батареи при работающем двигателе. Эта процедура позволит вам оценить уровень заряда, который обеспечивает генератор. Если напряжение, в зависимости от оборотов коленчатого вала, находится в пределах 12,5 -14,5 В для легковых машин и 24,5 - 26.5 В для грузовых машин, то это означает что агрегат исправен. Отклонения от указанных параметров говорит об образовании различных окислов на контактах проводки на линии подключения генератора, его износе и необходимости произвести диагностику и устранение неисправностей. После ремонта повторить контрольные мероприятия в разных режимах работы двигателя, в том числе при включенных фарах и иных потребителях электрического питания.
  • При длительном простое автомобиля отключать от "массы" аккумуляторную батарею, а при длительном хранении - периодически подзаряжать её. Если аккумуляторная батарея часто и длительное время находятся в разряженном или даже полузаряженном состоянии, возникает эффект сульфатации пластин (покрытие пластин аккумулятора крупнокристаллическим сернокислым свинцом). Это приводит к снижению ёмкости аккумуляторной батареи, к увеличению её внутреннего сопротивления и постепенной полной неработоспособности. Для подзарядки используются специальные устройства, которые понижают напряжение до необходимого уровня и после этого переходят в режим зарядки аккумулятора. Современные зарядные устройства по большей части автоматические и в процессе их применения не требуют контроля со стороны человека.
  • Избегать длительного пуска двигателя, особенно, в холодное время года . При запуске холодного двигателя стартер потребляет большой пусковой ток, который может вызвать "коробление" пластин аккумуляторной батареи и выпадание активной массы из них. Что в конечном итоге приведёт к полной неработоспособности аккумулятора.

Исправность аккумуляторной батареи проверяется специальным прибором – нагрузочной вилкой. Аккумулятор считается рабочим в том случае, если его напряжение не падает в течение минимум 5 секунд.

 

УХОД ЗА НЕОБСЛУЖИВАЕМОЙ АККУМУЛЯТОРНОЙ БАТАРЕЕЙ

 

 

Аккумуляторы данного типа получают всё большее распространение и пользуются всё большей популярностью. Уход за необслуживаемым аккумулятором сводится к стандартным действиям, требующимся для всех типов аккумуляторных батарей, описанный выше.

Необслуживаемые аккумуляторные батареи не имеют технологических отверстий с пробками для контроля уровня и доливки электролита до нужного уровня и плотности. В некоторые аккумуляторы этого типа встроены ареометры. В случае критического падения уровня электролита или снижения его плотности, аккумулятор подлежит замене.

 

УХОД ЗА ОБСЛУЖИВАЕМОЙ АККУМУЛЯТОРНОЙ БАТАРЕЕЙ

 

 

Аккумуляторные батареи данного типа имеют технологические отверстия для заливки электролита с плотными резьбовыми  пробками. Общее техническое обслуживание автомобильного аккумулятора данного типа производится в том же порядке, что и для всех, но дополнительно необходимо выполнить работы по проверке плотности и уровня электролита.

Проверка уровня электролита производят визуально или с использованием специальной мерной трубки. На обнажённых (в следствие падения уровня электролита) частях пластин происходит процесс сульфатации. Для поднятия уровня электролита, в банки аккумуляторной батареи доливают дистиллированную воду.

Плотность электролита проверяется кислотомером-ареометром и по ней оценивается уровень заряда аккумуляторной батареи. Перед проверкой плотности, если доливали электролит в аккумуляторную батарею, нужно запустить двигатель и дать ему поработать, чтобы при подзаряде аккумулятора электролит перемешался либо воспользуйтесь зарядным устройством.

 

 

В районах с резко континентальным климатом при переходе с зимней эксплуатации на летнюю, и наоборот, аккумуляторную батарею снять с автомобиля, подключить к зарядному устройству, выполнить заряд силой тока 7 А. В конце процесса зарядки, не отключая зарядное устройство, довести плотность электролита до значений, указанных в табл.1 и табл.2. Процедуру нужно проводить в несколько приёмов, при помощи резиновой груши, методом отсасывания либо доливки электролита или дистиллированной воды. При переходе на летнюю эксплуатацию доливать дистиллированную воду, при переходе на зимнюю эксплуатацию доливать электролит плотностью 1,400 г/см3. Разницу в плотности электролита в различных банках аккумуляторной батареи тоже выравнить доливанием дистилированной воды или электролита. Промежуток между двумя добавками воды или электролита должен быть не менее 30 мин.

 

УХОД ЗА РАЗБОРНОЙ АККУМУЛЯТОРНОЙ БАТАРЕЕЙ

 

Техническое обслуживание разборных аккумуляторов не отличается от условий обслуживания неразборных обслуживаемых батарей, только дополнительно требуется следить за состоянием поверхности мастики. Если на поверхности мастики появились трещины, их необходимо устранить оплавлением мастики при помощи электрического паяльника или другого нагревательного прибора. Не следует допускать натяжения проводов при подключении аккумулятора к автомобилю, так как это приводит к образованию трещин в мастике.

 

ОСОБЕННОСТИ ЗАПУСКА СУХОЗАРЯЖЕННЫХ БАТАРЕЙ.

 

В случае приобретения вами не залитой сухозаряженной батареи ее необходимо заправить электролитом с плотностью в 1,27 г/см3 до установленного уровня. Через 20 минут после заливки, но не позднее двух часов, произвести замер плотности электролита при помощи  кислотомера-ареометра. Если падение плотности не превысило 0,03 г/см3, батарею можно устанавливать на автомобиль для эксплуатации. Если же произошло падение плотности электролита выше нормы, необходимо подключить зарядное устройство и произвести зарядку. Ток заряда не должен превышать 10 % от номинального значения и процедура проводится до появления обильного выделения газов в банках аккумулятора. После этого повторно контролируется плотность и уровень. При необходимости в банки доливается дистиллированная вода. Затем вновь подключается зарядное устройство на полчаса для равномерного распределения электролита по всему объёму банок. Теперь аккумулятор готов к применению и может быть установлен на автомобиль для эксплуатации.

Регулярный уход за аккумуляторной батареей позволит продлить срок её эксплуатации и избежать сульфатизации пластин или их механического разрушения. Правильная эксплуатация аккумулятора существенно увеличивает его ресурс, что даёт возможность снизить издержки на эксплуатацию автомобиля.

vajnovsem.ru

Свинцово-кислотный аккумулятор — Википедия РУ

История

Принцип действия

Принцип работы свинцово-кислотных аккумуляторов основан на электрохимических реакциях свинца и диоксида свинца в водном растворе серной кислоты.

При подключении к электродам аккумулятора внешней нагрузки начинается электрохимическая реакция взаимодействия оксида свинца и серной кислоты, при этом металлический свинец окисляется до сульфата свинца (в классическом варианте аккумулятора). Вообще говоря, электрохимические процессы в аккумуляторе сложны. Проведенные в СССР исследования показали, что при разряде аккумулятора протекает как минимум ~60 различных реакций, порядка 20 из которых протекают без участия кислоты электролита (нехимические реакции)[1]

Во время разряда происходит восстановление диоксида свинца на катоде[1][2] и окисление свинца на аноде. При заряде протекают обратные реакции. При перезаряде аккумулятора, после исчерпания сульфата свинца начинается электролиз воды, при этом на аноде (положительный электрод) выделяется кислород, а на катоде (отрицательный электрод) — водород.

Электрохимические реакции (слева направо — при разряде, справа налево — при заряде):

PbO2+SO42−+4H++2e−⇆PbSO4+2h3O{\displaystyle PbO_{2}+SO_{4}^{2-}+4H^{+}+2e^{-}\leftrightarrows PbSO_{4}+2H_{2}O}  Pb+SO42−−2e−⇆PbSO4{\displaystyle Pb+SO_{4}^{2-}-2e^{-}\leftrightarrows PbSO_{4}} 

При разряде аккумулятора из электролита расходуется серная кислота и выделяется относительно более лёгкая вода, плотность электролита падает. При заряде происходит обратный процесс. В конце заряда, когда количество сульфата свинца на электродах снижается ниже некоторого критического значения, начинает преобладать процесс электролиза воды. Газообразные водород и кислород выделяются из электролита в виде пузырьков — так называемое «кипение» при перезаряде. Это нежелательное явление, при заряде его следует по возможности избегать, так как при этом вода необратимо расходуется, нарастает плотность электролита и есть риск взрыва образующихся газов. Потери воды в результате электролиза восполняют доливкой в банки аккумулятора дистиллированной воды. Необходимо помнить, что вода, попадающая в концентрированную серную кислоту, закипает и сильно разбрызгивает кислотные капли.

Устройство

Элемент свинцово-кислотного аккумулятора состоит из электродов (положительных и отрицательных) и разделительных пористых пластин, изготовленных из материала, не взаимодействующего с кислотой, препятствующих замыканию электродов (сепараторов), которые погружены в электролит. Электроды представляют собой плоские решётки из металлического свинца. В эти решётки запрессованы порошки диоксида свинца (PbO2) — в анодных пластинах и металлического свинца — в катодных пластинах. Применение порошков увеличивает поверхность раздела электролит — твердое вещество, тем самым увеличивает электрическую ёмкость аккумулятора.

В современных аккумуляторах электродные решётки изготавливаются не из чистого свинца, а из сплава свинца с сурьмой с содержанием её 1—2 % для повышения прочности и эксплуатационных характеристик. Иногда в сплав добавляют металлический кальций для изготовления анодных и катодных электродных решёток или только для анодных решёток. Добавление кальция имеет как преимущества, так и недостатки: например, у аккумулятора с пластинами, легированными кальцием, при глубоких разрядах существенно и необратимо снижается ёмкость.

Электроды вместе с сепараторами погружены в электролит, представляющий собой водный раствор серной кислоты (h3SO4). Соли кальция и магния (соли жесткости), всегда присутствующие в обычной воде, ухудшают параметры аккумулятора и снижают срок его службы. Поэтому для приготовления раствора кислоты применяют дистиллированную воду.

Электрическая проводимость электролита зависит от концентрации серной кислоты и при комнатной температуре максимальна при плотности электролита 1,23 г/см³. Чем больше проводимость электролита, тем меньше внутреннее сопротивление аккумулятора, и, соответственно, ниже потери энергии на нем. Однако, на практике в районах с холодным климатом применяются и более высокие концентрации серной кислоты, до 1,29−1,31 г/см³, это связано с тем, что при низких концентрациях электролит может замёрзнуть, а при замерзании образуется лёд, который может разорвать банки аккумулятора.

Существуют экспериментальные разработки аккумуляторов, где свинцовые решетки заменяют пластинами из переплетённых нитей углеродного волокна, покрытых тонкой свинцовой пленкой. При этом используется меньшее количество свинца, распределённого по большой площади, что позволяет изготовить аккумулятор не только компактным и лёгким, при прочих равных параметрах, но и значительно более эффективным — помимо большего КПД, заряжается значительно быстрее традиционных аккумуляторов[3].

В аккумуляторах, применяемых в бытовых ИБП, систем охранной сигнализации и др. жидкий электролит сгущают водным щелочным раствором силикатов натрия (Na2Si2O4) до пастообразного состояния.

Электрические и эксплуатационные параметры

  • Удельная предельная теоретическая энергоёмкость (Вт·ч/кг): около 133.
  • Удельная энергоёмкость (Вт·ч/кг): 30-60.
  • Теоретическая удельная энергоплотность (Вт·ч/дм³): 1250[4].
  • ЭДС заряжённого аккумулятора = 2,11—2,17 В, рабочее напряжение 2 В (3 или 6 секций в итоге дают стандартные 6 В или 12 В соответственно)[1].
  • Напряжение полностью разряженного аккумулятора = 1,75—1,8 В (из расчета на 1 элемент). Ниже разряжать их нельзя[1].
  • Рабочая температура: от −40 °C до +40 °C.
  • КПД: порядка 80—90 %.

Эксплуатационные характеристики

  • Номинальная ёмкость, показывает количество электричества, которое может отдать данный аккумулятор. Обычно указывается в ампер-часах, и измеряется при разряде малым током (1/20 номинальной ёмкости, выраженной в А·ч).[5]
  • Стартерный ток (для автомобильных аккумуляторов). Характеризует способности отдавать сильные токи при низких температурах. В большинстве случаев замеряется при −18 °C (0 °F) в течение 30 секунд. Различные методики замера отличаются (главным образом, допускаемым конечным напряжением) поэтому дают различные результаты.[6]
  • Резервная ёмкость (для автомобильных аккумуляторов). Характеризует время, в течение которого аккумулятор может отдавать ток 25 А до конечного напряжения 10,5 В согласно ГОСТ Р 53165-2008.[7]

Эксплуатация

  Ареометр может быть использован для проверки плотности электролита каждой секции.

При эксплуатации «обслуживаемых» аккумуляторов (с открываемыми пробками на банках) на автомобиле при движении по неровной дороге неизбежно происходит просачивание электролита из-под пробок на корпус аккумулятора. Через электропроводную невысыхающую пленку электролита происходит саморазряд аккумулятора. Во избежание сильного саморазряда необходимо периодически нейтрализовывать электролит протиранием корпуса, например, слабым раствором пищевой соды или разведенным в воде до консистенции жидкой сметаны хозяйственным мылом. Кроме того, особенно в жаркую погоду, происходит испарение воды из электролита; количество воды в электролите также уменьшается при перезаряде за счёт электролиза, что увеличивает его плотность, увеличивая напряжение на аккумуляторе. При существенной потере воды уровень электролита в банках может упасть ниже верха электродов, что снижает ёмкость. Поэтому необходимо следить за уровнем электролита и при необходимости доливать дистиллированную воду.

Эти меры вместе с проверкой автомобиля на паразитную утечку тока в его электрооборудовании и периодической подзарядкой аккумулятора могут существенно продлить срок эксплуатации аккумуляторной батареи.

Работа свинцово-кислотного аккумулятора при низких температурах

По мере снижения окружающей температуры параметры аккумулятора ухудшаются, однако, в отличие от прочих типов аккумуляторов, у свинцово-кислотных аккумуляторов это снижение относительно мало, что и обуславливает их широкое применение на транспорте. Эмпирически считается, что свинцово-кислотный аккумулятор теряет ~1 % ёмкости при снижении температуры на каждый градус от +20 °C. То есть, при температуре −30 °C свинцово-кислотный аккумулятор будет иметь 50 % ёмкости.

Снижение ёмкости и токоотдачи при низких температурах обусловлено, в первую очередь, ростом вязкости электролита. При этом ухудшается омывание электродов свежими порциями электролита, и концентрация серной кислоты в непосредственной близости от них снижается.

Разряженный аккумулятор в мороз может раздуться из-за замерзания электролита низкой плотности (близкой к 1.10) и образования льда, что приводит к необратимому повреждению свинцовых пластин внутри аккумулятора.

Низкие температуры электролита негативно влияют на работоспособность и зарядно-разрядные характеристики аккумулятора[8]:

  • при температуре от 0 °C до -10 °C снижение зарядных и разрядных характеристик влияют не существенно на работоспособность аккумулятора;
  • при температуре от -10 °C до -20 °C происходит снижение отдаваемой мощности в стартерном режиме и ухудшение заряда;
  • при температуре ниже -20 °C аккумуляторные батареи не обеспечивают надежного пуска двигателя и не способны принимать заряд от генератора.

Из-за большего внутреннего сопротивления, присущего современным аккумуляторам закрытого типа (т. н. «необслуживаемым», герметичным, герметизированным) при низких температурах по сравнению с обычными аккумуляторами (открытого типа), для них эти вопросы ещё более актуальны[9].

Для эксплуатации транспортных средств при низких температурах предназначены конструкции аккумулятора с внутренним электроподогревом[10].

Хранение

Свинцово-кислотные аккумуляторы следует хранить только в заряженном состоянии. При температуре ниже −20 °C подзаряд аккумуляторов должен проводиться постоянным напряжением 2,45 В/элемент 1 раз в год в течение 48 часов. При комнатной температуре — 1 раз в 8 месяцев постоянным напряжением 2,35 В/элемент в течение 6-12 часов. Хранение аккумуляторов при температуре выше 30 °C не рекомендуется.

Слой грязи и солей на поверхности корпуса аккумулятора создаёт проводник для тока между электродами и приводит к саморазряду аккумулятора, при глубоком разряде начинается преждевременная сульфатация пластин, и поэтому поверхность аккумулятора необходимо поддерживать в чистоте. Хранение свинцово-кислотных аккумуляторов в разряженном состоянии приводит к быстрой потере их работоспособности.

При длительном хранении аккумуляторов и разряде их большими токами (в стартерном режиме), или при уменьшении ёмкости аккумуляторов, нужно проводить контрольно-тренировочные циклы, то есть разряд-заряд токами номинальной величины.

При подготовке аккумуляторной батареи к зимнему хранению, что актуально для автомобилей не эксплуатируемых в холодное время года специалисты старейшей лаборатории НИИАЭ рекомендуют следующие действия:

1. Правильно и до конца зарядите аккумуляторную батарею; 2. Нанесите на положительный вывод АКБ пластичную смазку (литол, солидол и т. п.), так как «+» борн способен абсорбировать влагу из атмосферы, что может приводить к повышенному саморазряду; 3. Оставить на холоде, так как при низких температурах саморазряд намного ниже. Электролит полностью заряженного аккумулятора начинает замерзать при температуре ниже −55 С;

В случае необходимости поездки зимой — перенесите аккумулятор в отапливаемое помещение и в течение 7—9 часов (например, за ночь) он придёт в пригодное для использования состояние.

Износ свинцово-кислотных аккумуляторов

При использовании технической серной кислоты и не дистиллированной воды ускоряются саморазряд, сульфатация, разрушение пластин и уменьшение ёмкости аккумуляторной батареи[11].

При реакциях в аккумуляторе образуется нерастворимое вещество — сульфит свинца PbSO3, осаждающийся на пластинах, который образует диэлектрический слой между токоотводами и активной массой. Это один из факторов, влияющий на срок службы свинцово-кислотной аккумуляторной батареи.

Основными процессами износа свинцово-кислотных аккумуляторов являются:

  • сульфатация пластин[1], заключающаяся в образовании крупных кристаллитов сульфата свинца, который препятствует протеканию обратимых токообразующих процессов;
  • коррозия электродов, то есть электрохимические процессы окисления и растворения материала электродов в электролите, что вызывает осыпание материала электродов;
  • слабая механическая прочность или плохое сцепление активной массы с электродными решётками, что приводит к опаданию активной массы[1][12];
  • оползание и осыпание активной массы положительных электродов, связанное с разрыхлением, нарушением однородности[1].

Хотя батарею, вышедшую из строя по причине физического разрушения пластин, в домашних условиях отремонтировать нельзя, в литературе описаны химические растворы и прочие способы, позволяющие «десульфатировать» пластины. Простой, но чреватый полным отказом аккумулятора способ предполагает использование раствора сульфата магния[1]. Раствор сульфата магния заливается в секции, после чего батарею разряжают и заряжают несколько раз. Сульфат свинца и прочие остатки химической реакции осыпаются при этом на дно банок, это может привести к замыканию элемента, поэтому обработанные банки желательно промыть и заполнить новым электролитом номинальной плотности. Это позволяет несколько продлить срок использования устройства.

Вторичная переработка

  Кодовый символ, указывающий на то, что свинцовые батареи могут быть вторично переработаны.

Вторичная переработка для этого вида аккумуляторов играет важную роль, так как свинец, содержащийся в аккумуляторах, является токсичным тяжёлым металлом и наносит серьёзный вред при попадании в окружающую среду. Свинец и его соли должны быть переработаны на специальных предприятиях для возможности его вторичного использования.

Свинец из изношенных аккумуляторов часто используется для кустарной переплавки, например, при изготовлении грузил рыболовных снастей, охотничьей дроби или гирь. Для безопасности из аккумулятора следует слить электролит, для нейтрализации его остатков банки заливаются раствором какого-либо безвредного основания (например, питьевой соды), после чего корпус батареи разрушают и извлекают свинцовые электроды, клеммы и перемычки банок. У электродов в переплавку годится только их каркас в виде решётки, напрессованная на них рассыпчатая масса - это смесь соединений Pb, а не металл. Перемычки и клеммы аккумулятора могут быть переплавлены целиком.[источник не указан 99 дней] Кустарная переплавка серьезно вредит как окружающей среде, так и здоровью плавильщиков, поскольку свинец и его соединения с парами и дымом разносятся по всей округе.[13][14]

См. также

Примечания

Ссылки

Литература

  • Каштанов В. П., Титов В. В., Усков А. Ф. и др. Свинцовые стартерные аккумуляторные батареи. Руководство.. — М.: Воениздат, 1983. — 148 с.

http-wikipediya.ru

Свинцово-кислотный аккумулятор — Википедия

Свинцо́во-кисло́тный аккумуля́тор — наиболее распространенный и широко применяемый на сегодняшний день тип аккумуляторов, изобретен в 1859 году французским физиком Гастоном Планте. Основные области применения: стартёрные аккумуляторные батареи в транспортных средствах, аварийные источники электроэнергии, резервные источники энергии.

Свинцовый аккумулятор изобрёл в 1859—1860 годах Гастон Планте, сотрудник лаборатории Александра Беккереля. В 1878 году Камилл Фор усовершенствовал его конструкцию, покрыв пластины аккумулятора свинцовым суриком.

Принцип действия[править]

Принцип работы свинцово-кислотных аккумуляторов основан на электрохимических реакциях свинца и диоксида свинца в водном растворе серной кислоты.

При подключении к электродам аккумулятора внешней нагрузки начинается электрохимическая реакция взаимодействия оксида свинца и серной кислоты, при этом металлический свинец окисляется до сульфата свинца (в классическом варианте аккумулятора). Вообще говоря, электрохимические процессы в аккумуляторе сложны. Проведенные в СССР исследования показали, что при разряде аккумулятора протекает как минимум ~60 различных реакций, порядка 20 из которых протекают без участия кислоты электролита (нехимические реакции)[1]

Во время разряда происходит восстановление диоксида свинца на аноде[1][2] и окисление свинца на катоде. При заряде протекают обратные реакции. При перезаряде аккумулятора, после исчерпания сульфата свинца начинается электролиз воды, при этом на аноде (положительный электрод) выделяется кислород, а на катоде (отрицательный электрод) — водород.

Электрохимические реакции (слева направо — при разряде, справа налево — при заряде):

При разряде аккумулятора из электролита расходуется серная кислота и выделяется относительно более лёгкая вода, плотность электролита падает. При заряде происходит обратный процесс. В конце заряда, когда количество сульфата свинца на электродах снижается ниже некоторого критического значения, начинает преобладать процесс электролиза воды. Газообразные водород и кислород выделяются из электролита в виде пузырьков — так называемое «кипение» при перезаряде. Это нежелательное явление, при заряде его следует, по-возможности, избегать, так как при этом вода необратимо расходуется, нарастает плотность электролита и есть риск взрыва образующихся газов. Потери воды в результате электролиза восполняют доливкой в банки аккумулятора дистиллированной воды. Необходимо помнить, что вода, попадающая в концентрированную серную кислоту, закипает и сильно разбрызгивает кислотные капли.

Элемент свинцово-кислотного аккумулятора состоит из электродов (положительных и отрицательных) и разделительных пористых пластин, изготовленных из материала, невзаимодействующего с кислотой, препятствующих замыканию электродов (сепараторов), которые погружены в электролит. Электроды представляют собой плоские решётки из металлического свинца. В эти решётки запрессованы порошки диоксида свинца (PbO2) — в анодных пластинах и металлического свинца — в катодных пластинах. Применение порошков увеличивает поверхность раздела электролит — твердое вещество, тем самым увеличивает электрическую ёмкость аккумулятора.

В современных аккумуляторах электродные решётки изготавливаются не из чистого свинца, а из сплава свинца с сурьмой с содержанием её 1—2 % для повышения прочности и эксплуатационных характеристик. Иногда в сплав добавляют металлический кальций, для изготовления анодных и катодных электродных решёток, или только для анодных решёток. Добавление кальция имеет как преимущества, так и недостатки. Например, у аккумулятора с пластинами, легированными кальцием при глубоких разрядах существенно и необратимо снижается ёмкость.

Электроды вместе с сепараторами погружены в электролит, представляющий собой водный раствор серной кислоты(h3SO4). Соли кальция и магния (жесткая вода), всегда присутствующие в обычной воде ухудшают параметры аккумулятора и снижают срок его службы. Поэтому для приготовления раствора кислоты применяют дистиллированную воду. Электрическая проводимость электролита зависит от концентрации серной кислоты и при комнатной температуре максимальна при плотности электролита 1,23 г/см³. Чем больше проводимость электролита, тем меньше внутреннее сопротивление аккумулятора, и, соответственно, ниже потери.

Однако, на практике, часто в районах с холодным климатом применяются и более высокие концентрации серной кислоты, до 1,29−1,31 г/см³, это связано с тем, что при низких концентрациях электролит может замёрзнуть, при замерзании образуется лёд, который может разорвать банки аккумулятора.

Существуют экспериментальные разработки аккумуляторов, где свинцовые решетки заменяют пластинами из переплетённых нитей углеродного волокна, покрытых тонкой свинцовой пленкой. При этом используется меньшее количество свинца, распределённого по большой площади, что позволяет изготовить аккумулятор не только компактным и лёгким, при прочих равных параметрах, но и значительно более эффективным — помимо большего КПД, заряжается значительно быстрее традиционных аккумуляторов[3].

В аккумуляторах, применяемых в бытовых ИБП, систем охранной сигнализации и др. жидкий электролит сгущают водным щелочным раствором силикатов натрия (Na2Si2O4) до пастообразного состояния.

Электрические и эксплуатационные параметры[править]

Аккумулятор электромобиля.
  • Удельная предельная теоретическая энергоёмкость (Вт·ч/кг): около 133.
  • Удельная энергоёмкость (Вт·ч/кг): 30-60.
  • Теоретическая удельная энергоплотность (Вт·ч/дм³): 1250[4].
  • ЭДС заряжённого аккумулятора = 2,11—2,17 В, рабочее напряжение 2 В (3 или 6 секций в итоге дают стандартные 6 В или 12 В соответственно)[1].
  • Напряжение полностью разряженного аккумулятора = 1,75—1,8 В (из расчета на 1 элемент). Ниже разряжать их нельзя[1].
  • Рабочая температура: от −40 °C до +40 °C.
  • КПД: порядка 80—90 %.

Эксплуатационные характеристики[править]

  • Номинальная ёмкость, показывает количество электричества, которое может отдать данный аккумулятор. Обычно указывается в ампер-часах, и измеряется при разряде[5] малым током (1/20 номинальной ёмкости, выраженной в А·ч).
  • Стартерный ток (для автомобильных аккумуляторов). Характеризует способности отдавать сильные токи при низких температурах. В большинстве случаев замеряется при −18 °C (0 °F) в течение 30 секунд. Различные методики[6] замера отличаются, главным образом, допускаемым конечным напряжением, поэтому дают различные результаты.
  • Резервная ёмкость (для автомобильных аккумуляторов). Характеризует время, в течение которого аккумулятор может отдавать ток 25 А до конечного напряжения 10,5 В согласно ГОСТ Р 53165-2008[7].
Ареометр может быть использован для проверки плотности электролита каждой секции.

При эксплуатации «обслуживаемых» аккумуляторов (с открываемыми пробками на банках) на автомобиле при движении по неровной дороге неизбежно происходит просачивание электролита из-под пробок на корпус аккумулятора. Через электропроводную невысыхающую пленку электролита происходит саморазряд аккумулятора. Во избежание сильного саморазряда необходимо периодически нейтрализовывать электролит протиранием корпуса, например слабым раствором пищевой соды или разведенным в воде до состояния консистенции жидкой сметаны хозяйственным мылом. Кроме того, особенно в жаркую погоду, происходит испарение воды из электролита, или количество воды в электролите уменьшается при перезаряде за счёт электролиза, что увеличивает его плотность, увеличивая напряжение на аккумуляторе. При существенной потере воды уровень электролита в банках может упасть ниже верха электродов, что снижает ёмкость. Поэтому необходимо следить за уровнем электролита и при необходимости доливать дистиллированную воду.

Эти меры вместе с проверкой автомобиля на паразитную утечку тока в его электрооборудовании и периодической подзарядкой аккумулятора могут существенно продлить срок эксплуатации аккумуляторной батареи.

Работа свинцово-кислотного аккумулятора при низких температурах[править]

По мере снижения окружающей температуры, параметры аккумулятора ухудшаются, однако, в отличие от прочих типов аккумуляторов, у свинцово-кислотных это снижение относительно мало, что не в последнюю очередь обуславливает их широкое применение на транспорте. Эмпирически считается, что свинцово-кислотный аккумулятор теряет ~1 % ёмкости при снижении температуры на каждый градус от +20 °C. То есть, при температуре −30 °C свинцово-кислотный аккумулятор будет иметь 50 % ёмкости.

Снижение ёмкости и токоотдачи при низких температурах обусловлено, в первую очередь, ростом вязкости электролита, при этом ухудшается омывание электродов свежими порциями электролита и концентрация серной кислоты в непосредственной близости от них снижается.

Разряженный аккумулятор в мороз может раздуться из-за замерзания электролита низкой плотности (близкой к 1.10) и образования льда, что приводит к необратимому повреждению свинцовых пластин внутри аккумулятора.

Низкие температуры электролита негативно влияют на работоспособность и зарядно-разрядные характеристики аккумулятора[8]:

  • при температуре от 0 °C до -10 °C снижение зарядных и разрядных характеристик влияют не существенно на работоспособность аккумулятора;
  • при температуре от -10 °C до -20 °C происходит снижение отдаваемой мощности в стартерном режиме и ухудшение заряда;
  • при температуре ниже -20 °C аккумуляторные батареи не обеспечивают надежного пуска двигателя и не способны принимать заряд от генератора.

Из-за большего внутреннего сопротивления, присущего современным аккумуляторам закрытого типа (т. н. «необслуживаемым» аккумуляторам: герметичным, герметизированным) при низких температурах по сравнению с обычными аккумуляторами (открытого типа), эти вопросы ещё более актуальны[9].

Для эксплуатации при низких отрицательных температурах предназначены конструкции аккумулятора с внутренним электроподогревом[10].

Хранение[править]

Свинцово-кислотные аккумуляторы следует хранить только в заряжённом состоянии. При температуре ниже −20 °C подзаряд аккумуляторов должен проводиться постоянным напряжением 2,45 В/элемент 1 раз в год в течение 48 часов. При комнатной температуре — 1 раз в 8 месяцев постоянным напряжением 2,35 В/элемент в течение 6-12 часов. Хранение аккумуляторов при температуре выше 30 °C не рекомендуется.

Слой грязи и солей на поверхности корпуса аккумулятора создаёт проводник для тока между электродами и приводит к саморазряду аккумулятора, при глубоком разряде начинается преждевременная сульфатация пластин и поэтому поверхность аккумулятора необходимо поддерживать в чистоте. Хранение свинцово-кислотных аккумуляторов в разряженном состоянии приводит к быстрой потере их работоспособности.

При длительном хранении аккумуляторов и разряде их большими токами (в стартерном режиме), или при уменьшении ёмкости аккумуляторов, нужно проводить контрольно-тренировочные циклы, то есть разряд-заряд токами номинальной величины.

При подготовке аккумуляторной батареи к зимнему хранению, что актуально для автомобилей не эксплуатируемых в холодное время года специалисты старейшей лаборатории НИИАЭ рекомендуют следующие действия:

1. Правильно и до конца зарядите аккумуляторную батарею; 2. Нанесите на положительный вывод АКБ пластичную смазку (литол, солидол и т. п.), так как «+» борн способен абсорбировать влагу из атмосферы, что может приводить к повышенному саморазряду; 3. Оставить на холоде, так как при низких температурах саморазряд намного ниже. Электролит полностью заряженного аккумулятора начинает замерзать при температуре ниже −55 С;

В случае необходимости поездки зимой — перенесите аккумулятор в отапливаемое помещение и в течение 7—9 часов (например, за ночь) он придёт в пригодное для использования состояние.

Износ свинцово-кислотных аккумуляторов[править]

При использовании технической серной кислоты и не дистиллированной воды, ускоряются саморазряд, сульфатация, разрушение пластин и уменьшение ёмкости аккумуляторной батареи[11].

При реакциях в аккумуляторе образуется нерастворимое вещество — сульфит свинца PbSO3, осаждающийся на пластинах, который образует диэлектрический слой между токоотводами и активной массой. Это один из факторов, влияющий на срок службы свинцово-кислотной аккумуляторной батареи.

Основными процессами износа свинцово-кислотных аккумуляторов являются:

  • сульфатация пластин[1], заключающаяся в образовании крупных кристаллитов сульфата свинца, который препятствует протеканию обратимых токообразующих процессов;
  • коррозия электродов, то есть электрохимические процессы окисления и растворения материала электродов в электролите, что вызывает осыпание материала электродов;
  • слабая механическая прочность или плохое сцепление активной массы с электродными решётками, что приводит к опаданию активной массы[1][12];
  • оползание и осыпание активной массы положительных электродов, связанное с разрыхлением, нарушением однородности[1].

Хотя батарею, вышедшую из строя по причине физического разрушения пластин в домашних условиях отремонтировать нельзя, в литературе описаны химические растворы и прочие способы, позволяющие «десульфатировать» пластины. Простой, но чреватый полным отказом аккумулятора способ предполагает использование раствора сульфата магния[1]. Раствор сульфата магния заливается в секции, после чего батарею разряжают и заряжают несколько раз. Сульфат свинца и прочие остатки химической реакции осыпаются при этом на дно банок, это может привести к замыканию элемента, поэтому обработанные банки желательно промыть и заполнить новым электролитом номинальной плотности. Это позволяет несколько продлить срок использования устройства.

Вторичная переработка[править]

Кодовый символ указывающий, что свинцовые батареи могут быть вторично переработаны.

Вторичная переработка для этого вида аккумуляторов играет важную роль, так как свинец, содержащийся в аккумуляторах, является токсичным тяжёлым металлом и наносит серьёзный вред при попадании в окружающую среду. Свинец и его соли должны быть переработаны на специальных предприятиях для возможности его вторичного использования.

Свинец из изношенных аккумуляторов часто используется для кустарной переплавки, например, при изготовлении грузил рыболовных снастей, охотничей дроби или гирь. Для безопасности из аккумулятора следует слить электролит, для нейтрализации его остатков банки заливаются раствором какого-либо безвредного основания (например, питьевой соды), после чего корпус батареи разрушают и извлекают свинцовые электроды, клеммы и перемычки банок. У электродов в переплавку годится только их каркас в виде решётки, напрессованная на них рассыпчатая масса - это смесь соединений Pb, а не металл. Перемычки и клеммы аккумулятора могут быть переплавлены целиком.

  1. ↑ 1,01,11,21,31,41,51,61,7 Свинцовые аккумуляторы. Эксплуатация: Правда и вымыслы.
  2. ↑ Н. Ламтев. Самодельные аккумуляторы. Москва: Государственное издательство по вопросам радио, 1936 год.
  3. ↑ http://auto.lenta.ru/news/2006/12/19/battery/ Американцы облегчили и уменьшили аккумуляторы
  4. ↑ Расчет идеального свинцового аккумулятора.
  5. ↑ ГОСТ 26881-86 Методика проверки свинцовых АКБ
  6. ↑ Краткий аналитический обзор существующих способов оценки ёмкости ХИТ и приборов, реализующих эти способы
  7. ↑ ГОСТ Р 53165-2008: Батареи аккумуляторные свинцовые стартерные для автотракторной техники. Общие технические условия
  8. ↑ Руководство, 1983, с. 70
  9. ↑ Железнодорожный транспорт. – 2011. №12. – c.35.
  10. ↑ Руководство, 1983, с. 21-23
  11. ↑ Вредные добавки к электролиту свинцовых аккумуляторов
  12. ↑ О противоречиях в теории работы свинцового кислотного аккумулятора к. т. н., проф. Кочуров А. А. Рязанский военный автомобильный институт
  • Каштанов В. П., Титов В. В., Усков А. Ф. и др. Свинцовые стартерные аккумуляторные батареи. Руководство.. — М.: Воениздат, 1983. — 148 с.

wp.wiki-wiki.ru

Свинцово-кислотный аккумулятор — википедия орг

История

Принцип действия

Принцип работы свинцово-кислотных аккумуляторов основан на электрохимических реакциях свинца и диоксида свинца в водном растворе серной кислоты.

При подключении к электродам аккумулятора внешней нагрузки начинается электрохимическая реакция взаимодействия оксида свинца и серной кислоты, при этом металлический свинец окисляется до сульфата свинца (в классическом варианте аккумулятора). Вообще говоря, электрохимические процессы в аккумуляторе сложны. Проведенные в СССР исследования показали, что при разряде аккумулятора протекает как минимум ~60 различных реакций, порядка 20 из которых протекают без участия кислоты электролита (нехимические реакции)[1]

Во время разряда происходит восстановление диоксида свинца на катоде[1][2] и окисление свинца на аноде. При заряде протекают обратные реакции. При перезаряде аккумулятора, после исчерпания сульфата свинца начинается электролиз воды, при этом на аноде (положительный электрод) выделяется кислород, а на катоде (отрицательный электрод) — водород.

Электрохимические реакции (слева направо — при разряде, справа налево — при заряде):

PbO2+SO42−+4H++2e−⇆PbSO4+2h3O{\displaystyle PbO_{2}+SO_{4}^{2-}+4H^{+}+2e^{-}\leftrightarrows PbSO_{4}+2H_{2}O}  Pb+SO42−−2e−⇆PbSO4{\displaystyle Pb+SO_{4}^{2-}-2e^{-}\leftrightarrows PbSO_{4}} 

При разряде аккумулятора из электролита расходуется серная кислота и выделяется относительно более лёгкая вода, плотность электролита падает. При заряде происходит обратный процесс. В конце заряда, когда количество сульфата свинца на электродах снижается ниже некоторого критического значения, начинает преобладать процесс электролиза воды. Газообразные водород и кислород выделяются из электролита в виде пузырьков — так называемое «кипение» при перезаряде. Это нежелательное явление, при заряде его следует по возможности избегать, так как при этом вода необратимо расходуется, нарастает плотность электролита и есть риск взрыва образующихся газов. Потери воды в результате электролиза восполняют доливкой в банки аккумулятора дистиллированной воды. Необходимо помнить, что вода, попадающая в концентрированную серную кислоту, закипает и сильно разбрызгивает кислотные капли.

Устройство

Элемент свинцово-кислотного аккумулятора состоит из электродов (положительных и отрицательных) и разделительных пористых пластин, изготовленных из материала, не взаимодействующего с кислотой, препятствующих замыканию электродов (сепараторов), которые погружены в электролит. Электроды представляют собой плоские решётки из металлического свинца. В эти решётки запрессованы порошки диоксида свинца (PbO2) — в анодных пластинах и металлического свинца — в катодных пластинах. Применение порошков увеличивает поверхность раздела электролит — твердое вещество, тем самым увеличивает электрическую ёмкость аккумулятора.

В современных аккумуляторах электродные решётки изготавливаются не из чистого свинца, а из сплава свинца с сурьмой с содержанием её 1—2 % для повышения прочности и эксплуатационных характеристик. Иногда в сплав добавляют металлический кальций для изготовления анодных и катодных электродных решёток или только для анодных решёток. Добавление кальция имеет как преимущества, так и недостатки: например, у аккумулятора с пластинами, легированными кальцием, при глубоких разрядах существенно и необратимо снижается ёмкость.

Электроды вместе с сепараторами погружены в электролит, представляющий собой водный раствор серной кислоты (h3SO4). Соли кальция и магния (соли жесткости), всегда присутствующие в обычной воде, ухудшают параметры аккумулятора и снижают срок его службы. Поэтому для приготовления раствора кислоты применяют дистиллированную воду.

Электрическая проводимость электролита зависит от концентрации серной кислоты и при комнатной температуре максимальна при плотности электролита 1,23 г/см³. Чем больше проводимость электролита, тем меньше внутреннее сопротивление аккумулятора, и, соответственно, ниже потери энергии на нем. Однако, на практике в районах с холодным климатом применяются и более высокие концентрации серной кислоты, до 1,29−1,31 г/см³, это связано с тем, что при низких концентрациях электролит может замёрзнуть, а при замерзании образуется лёд, который может разорвать банки аккумулятора.

Существуют экспериментальные разработки аккумуляторов, где свинцовые решетки заменяют пластинами из переплетённых нитей углеродного волокна, покрытых тонкой свинцовой пленкой. При этом используется меньшее количество свинца, распределённого по большой площади, что позволяет изготовить аккумулятор не только компактным и лёгким, при прочих равных параметрах, но и значительно более эффективным — помимо большего КПД, заряжается значительно быстрее традиционных аккумуляторов[3].

В аккумуляторах, применяемых в бытовых ИБП, систем охранной сигнализации и др. жидкий электролит сгущают водным щелочным раствором силикатов натрия (Na2Si2O4) до пастообразного состояния.

Электрические и эксплуатационные параметры

  • Удельная предельная теоретическая энергоёмкость (Вт·ч/кг): около 133.
  • Удельная энергоёмкость (Вт·ч/кг): 30-60.
  • Теоретическая удельная энергоплотность (Вт·ч/дм³): 1250[4].
  • ЭДС заряжённого аккумулятора = 2,11—2,17 В, рабочее напряжение 2 В (3 или 6 секций в итоге дают стандартные 6 В или 12 В соответственно)[1].
  • Напряжение полностью разряженного аккумулятора = 1,75—1,8 В (из расчета на 1 элемент). Ниже разряжать их нельзя[1].
  • Рабочая температура: от −40 °C до +40 °C.
  • КПД: порядка 80—90 %.

Эксплуатационные характеристики

  • Номинальная ёмкость, показывает количество электричества, которое может отдать данный аккумулятор. Обычно указывается в ампер-часах, и измеряется при разряде малым током (1/20 номинальной ёмкости, выраженной в А·ч).[5]
  • Стартерный ток (для автомобильных аккумуляторов). Характеризует способности отдавать сильные токи при низких температурах. В большинстве случаев замеряется при −18 °C (0 °F) в течение 30 секунд. Различные методики замера отличаются (главным образом, допускаемым конечным напряжением) поэтому дают различные результаты.[6]
  • Резервная ёмкость (для автомобильных аккумуляторов). Характеризует время, в течение которого аккумулятор может отдавать ток 25 А до конечного напряжения 10,5 В согласно ГОСТ Р 53165-2008.[7]

Эксплуатация

  Ареометр может быть использован для проверки плотности электролита каждой секции.

При эксплуатации «обслуживаемых» аккумуляторов (с открываемыми пробками на банках) на автомобиле при движении по неровной дороге неизбежно происходит просачивание электролита из-под пробок на корпус аккумулятора. Через электропроводную невысыхающую пленку электролита происходит саморазряд аккумулятора. Во избежание сильного саморазряда необходимо периодически нейтрализовывать электролит протиранием корпуса, например, слабым раствором пищевой соды или разведенным в воде до консистенции жидкой сметаны хозяйственным мылом. Кроме того, особенно в жаркую погоду, происходит испарение воды из электролита; количество воды в электролите также уменьшается при перезаряде за счёт электролиза, что увеличивает его плотность, увеличивая напряжение на аккумуляторе. При существенной потере воды уровень электролита в банках может упасть ниже верха электродов, что снижает ёмкость. Поэтому необходимо следить за уровнем электролита и при необходимости доливать дистиллированную воду.

Эти меры вместе с проверкой автомобиля на паразитную утечку тока в его электрооборудовании и периодической подзарядкой аккумулятора могут существенно продлить срок эксплуатации аккумуляторной батареи.

Работа свинцово-кислотного аккумулятора при низких температурах

По мере снижения окружающей температуры параметры аккумулятора ухудшаются, однако, в отличие от прочих типов аккумуляторов, у свинцово-кислотных аккумуляторов это снижение относительно мало, что и обуславливает их широкое применение на транспорте. Эмпирически считается, что свинцово-кислотный аккумулятор теряет ~1 % ёмкости при снижении температуры на каждый градус от +20 °C. То есть, при температуре −30 °C свинцово-кислотный аккумулятор будет иметь 50 % ёмкости.

Снижение ёмкости и токоотдачи при низких температурах обусловлено, в первую очередь, ростом вязкости электролита. При этом ухудшается омывание электродов свежими порциями электролита, и концентрация серной кислоты в непосредственной близости от них снижается.

Разряженный аккумулятор в мороз может раздуться из-за замерзания электролита низкой плотности (близкой к 1.10) и образования льда, что приводит к необратимому повреждению свинцовых пластин внутри аккумулятора.

Низкие температуры электролита негативно влияют на работоспособность и зарядно-разрядные характеристики аккумулятора[8]:

  • при температуре от 0 °C до -10 °C снижение зарядных и разрядных характеристик влияют не существенно на работоспособность аккумулятора;
  • при температуре от -10 °C до -20 °C происходит снижение отдаваемой мощности в стартерном режиме и ухудшение заряда;
  • при температуре ниже -20 °C аккумуляторные батареи не обеспечивают надежного пуска двигателя и не способны принимать заряд от генератора.

Из-за большего внутреннего сопротивления, присущего современным аккумуляторам закрытого типа (т. н. «необслуживаемым», герметичным, герметизированным) при низких температурах по сравнению с обычными аккумуляторами (открытого типа), для них эти вопросы ещё более актуальны[9].

Для эксплуатации транспортных средств при низких температурах предназначены конструкции аккумулятора с внутренним электроподогревом[10].

Хранение

Свинцово-кислотные аккумуляторы следует хранить только в заряженном состоянии. При температуре ниже −20 °C подзаряд аккумуляторов должен проводиться постоянным напряжением 2,45 В/элемент 1 раз в год в течение 48 часов. При комнатной температуре — 1 раз в 8 месяцев постоянным напряжением 2,35 В/элемент в течение 6-12 часов. Хранение аккумуляторов при температуре выше 30 °C не рекомендуется.

Слой грязи и солей на поверхности корпуса аккумулятора создаёт проводник для тока между электродами и приводит к саморазряду аккумулятора, при глубоком разряде начинается преждевременная сульфатация пластин, и поэтому поверхность аккумулятора необходимо поддерживать в чистоте. Хранение свинцово-кислотных аккумуляторов в разряженном состоянии приводит к быстрой потере их работоспособности.

При длительном хранении аккумуляторов и разряде их большими токами (в стартерном режиме), или при уменьшении ёмкости аккумуляторов, нужно проводить контрольно-тренировочные циклы, то есть разряд-заряд токами номинальной величины.

При подготовке аккумуляторной батареи к зимнему хранению, что актуально для автомобилей не эксплуатируемых в холодное время года специалисты старейшей лаборатории НИИАЭ рекомендуют следующие действия:

1. Правильно и до конца зарядите аккумуляторную батарею; 2. Нанесите на положительный вывод АКБ пластичную смазку (литол, солидол и т. п.), так как «+» борн способен абсорбировать влагу из атмосферы, что может приводить к повышенному саморазряду; 3. Оставить на холоде, так как при низких температурах саморазряд намного ниже. Электролит полностью заряженного аккумулятора начинает замерзать при температуре ниже −55 С;

В случае необходимости поездки зимой — перенесите аккумулятор в отапливаемое помещение и в течение 7—9 часов (например, за ночь) он придёт в пригодное для использования состояние.

Износ свинцово-кислотных аккумуляторов

При использовании технической серной кислоты и не дистиллированной воды ускоряются саморазряд, сульфатация, разрушение пластин и уменьшение ёмкости аккумуляторной батареи[11].

При реакциях в аккумуляторе образуется нерастворимое вещество — сульфит свинца PbSO3, осаждающийся на пластинах, который образует диэлектрический слой между токоотводами и активной массой. Это один из факторов, влияющий на срок службы свинцово-кислотной аккумуляторной батареи.

Основными процессами износа свинцово-кислотных аккумуляторов являются:

  • сульфатация пластин[1], заключающаяся в образовании крупных кристаллитов сульфата свинца, который препятствует протеканию обратимых токообразующих процессов;
  • коррозия электродов, то есть электрохимические процессы окисления и растворения материала электродов в электролите, что вызывает осыпание материала электродов;
  • слабая механическая прочность или плохое сцепление активной массы с электродными решётками, что приводит к опаданию активной массы[1][12];
  • оползание и осыпание активной массы положительных электродов, связанное с разрыхлением, нарушением однородности[1].

Хотя батарею, вышедшую из строя по причине физического разрушения пластин, в домашних условиях отремонтировать нельзя, в литературе описаны химические растворы и прочие способы, позволяющие «десульфатировать» пластины. Простой, но чреватый полным отказом аккумулятора способ предполагает использование раствора сульфата магния[1]. Раствор сульфата магния заливается в секции, после чего батарею разряжают и заряжают несколько раз. Сульфат свинца и прочие остатки химической реакции осыпаются при этом на дно банок, это может привести к замыканию элемента, поэтому обработанные банки желательно промыть и заполнить новым электролитом номинальной плотности. Это позволяет несколько продлить срок использования устройства.

Вторичная переработка

  Кодовый символ, указывающий на то, что свинцовые батареи могут быть вторично переработаны.

Вторичная переработка для этого вида аккумуляторов играет важную роль, так как свинец, содержащийся в аккумуляторах, является токсичным тяжёлым металлом и наносит серьёзный вред при попадании в окружающую среду. Свинец и его соли должны быть переработаны на специальных предприятиях для возможности его вторичного использования.

Свинец из изношенных аккумуляторов часто используется для кустарной переплавки, например, при изготовлении грузил рыболовных снастей, охотничьей дроби или гирь. Для безопасности из аккумулятора следует слить электролит, для нейтрализации его остатков банки заливаются раствором какого-либо безвредного основания (например, питьевой соды), после чего корпус батареи разрушают и извлекают свинцовые электроды, клеммы и перемычки банок. У электродов в переплавку годится только их каркас в виде решётки, напрессованная на них рассыпчатая масса - это смесь соединений Pb, а не металл. Перемычки и клеммы аккумулятора могут быть переплавлены целиком.[источник не указан 99 дней] Кустарная переплавка серьезно вредит как окружающей среде, так и здоровью плавильщиков, поскольку свинец и его соединения с парами и дымом разносятся по всей округе.[13][14]

См. также

Примечания

Ссылки

Литература

  • Каштанов В. П., Титов В. В., Усков А. Ф. и др. Свинцовые стартерные аккумуляторные батареи. Руководство.. — М.: Воениздат, 1983. — 148 с.

www-wikipediya.ru

Cвинцово-кислотные аккумуляторные батареи

Строительные машины и оборудование, справочник

Категория:

   Электрооборудование автомобилей

Cвинцово-кислотные аккумуляторные батареи

Принцип действия свинцово-кислотного аккумулятора

Аккумулятором называется электрический прибор, который при зарядке от источников постоянного тока накапливает электрическую энергию, а при разрядке отдает ее потребителям, являясь в этом случае источником тока.

На автомобилях основное применение имеют свинцово-кислотные аккумуляторы. Кроме них, могут иметь применение также щелочные железо-никелевые аккумуляторы.

Свинцово-кислотный простейший аккумулятор (элемент) представляет собой стеклянную или пластмассовую банку с опущенными в нее двумя свинцовыми пластинками и залитую электролитом— раствором из химически чистой крепкой серной кислоты и дистиллированной воды. Серная кислота, действуя на свинцовые пластины, окисляет их, и поверхность пластин покрывается налетом сернокислого свинца. Плотность раствора при этом уменьшается, и в электролите остается почти чистая вода.

Для того чтобы аккумулятор мог давать ток, его необходимо предварительно зарядить, т. е. пропустить через него постоянный электрический ток. Вследствие прохождения электрического тока через электролит от положительной пластины к отрицательной в аккумуляторе происходит химическая реакция. При этом сернокислый свинец на положительной пластине преобразовывается в перекись свинца, а на отрицательной — в чистый губчатый свинец, в электролите снова появляется серная кислота, и плотность раствора возрастает.

Когда химическое преобразование состава пластин полностью закончится, аккумулятор будет заряжен. Если продолжать пропускать через аккумулятор электрический ток, вода электролита начнет разлагаться на составные части — водород и кислород, которые в виде пузырьков будут выделяться из электролита. Бурное выделение пузырьков (кипение электролита) указывает на конец зарядки аккумулятора.

При замыкании полюсов заряженного аккумулятора внешней цепью в нем будет происходить обратная химическая реакция, при которой пластины по своему составу будут возвращаться в первоначальное состояние. Вследствие этого аккумулятор будет разряжаться и отдавать запасенную электрическую энергию для питания включенных потребителей. При разрядке электрический ток во внешней цепи потечет от положительной пластины к отрицательной, т. е. в направлении, обратном направлению при зарядке. При этом положительная и отрицательная пластины аккумулятора опять будут покрываться налетом сернокислого свинца, а плотность электролита понизится, и он превратится в почти чистую воду. Когда химическая реакция полностью закончится, аккумулятор разрядится и больше электрического тока давать не сможет. Для дальнейшей работы аккумулятор необходимо вновь зарядить.

Устройство аккумуляторной батареи

Аккумуляторная батарея собирается из отдельных элементов — аккумуляторов в общем баке-моноблоке.

Моноблок автомобильной аккумуляторной батареи разделен перегородками на отдельные камеры аккумуляторов. Каждая камера закрыта сверху эбонитовой крышкой с заливочным отверстием, завернутым пробкой. В камере установлен набор пластин (положительных и отрицательных), разделенных сепараторами.

Моноблок изготовлен из асфальто-пековой массы или эбонита. В камеры асфальто-пекового моноблока обычно запрессовывают тонкостенные кислотостойкие вставки из пластмассы (полихлорвинил или винипласт), которые хорошо предохраняют стенки моноблока от разъедания кислотой, что значительно увеличивает сроки его службы.

Для увеличения емкости аккумуляторной батареи, т. е. способности ее поглощать при зарядке большее количество электрической энергии, в каждую камеру устанавливают по нескольку положительных и отрицательных пластин специальной конструкции, в результате чего увеличивается общая рабочая поверхность пластин.

Рис. 1. Схема действия свинцово-кислотного аккумулятора

Основой каждой пластины является решетка, отлитая из чистого свинца с небольшой примесью (6—8%) сурьмы для увеличения механической прочности. В решетку впрессовывают активную массу, затем ее сушат. Эту массу приготовляют из порошкообразных окислов свинца — свинцового сурика и свинцового глета, размешанных на крепкой химически чистой серной кислоте. В активную массу положительных пластин обычно входит до 75% свинцового сурика, и пластины имеют поэтому красноватый оттенок. Активная масса отрицательных пластин содержит больше свинцового глета, пластины имеют серый или синеватый цвет.

Рис. 2. Свинцово-кпслотная аккумуляторная батарея: а — трехэлементная; б — шестиэлементная

Кроме указанных окислов свинца, в качестве набивки для пластин применяют также порошкообразный свинец, окисляющийся при размоле, размешиваемый на серной кислоте.

После изготовления и сборки пластины подвергают формовке, т. е. многократным процессам зарядки электрическим током и разрядки.

Все одноименные пластины соединяют путем сварки в блок общей перемычкой — бареткой с выводным штырем. В каждой камере положительные пластины расположены меяеду отрицательными. Блоки пластин имеют два выводных штыря (борна) — положительный (плюсовой) и отрицательный (минусовый). Отрицательных пластин в каждом блоке установлено на одну больше, чем положительных. Поэтому каждая положительная пластина закрыта с обеих сторон отрицательными пластинами, вследствие чего используется вся ее поверхность и устраняется возможность ее коробления при большом разрядном токе.

Для устранения непосредственного соприкосновения одной пластины с другой или замыкания их выпадающей активной массой между ними установлены кислотоупорные прокладки — сепараторы. Сепараторы изготовляют двух типов: 1) из древесины или комбинированные составные — из древесины и хлорвинила, или из древесины и стекловойлока; 2) из микропористого эбонита (мипора) и микропористой пластмассы (мипласта) или комбинированные из мипласта и хлорвинила, или мипласта и стекло-войлока.

Пластины с сепараторами установлены в отдельных камерах моноблока и опираются внизу на ребра днища, что предохраняет от замыкания нижние части пластины выпадающей с течением времени активной массой и накапливающейся между ребрами в шламовой камере. Сверху каждая камера плотно закрыта пластмассовой крышкой. Края камер моноблока в местах соединения с крышкой залиты кислотоупорной мастикой. На поверхность крышки каждой камеры выходят отрицательный и положительный штыри блоков (борны) пластин. Штыри уплотнены ребристыми свинцовыми втулками, заделанными в крышках. Бтулки припаяны к штырям вместе с междуэлементными перемычками. В некоторых типах батарей штыри с крышками уплотнены кислотостойкой массой. Крайние два штыря в батарее — плюсовый и минусовый — снабжены полюсными наконечниками, к которым с помощью зажимов и стяжных болтов присоединяются кабели внешней сети. В каждой камере над пластинами установлены предохранительные щитки из хлорвинила или другого кислотоупорного материала, служащие для защиты кромок сепараторов и пластин от механических повреждений. В крышке каждой камеры имеется наливное отверстие, закрываемое на уплотняющей прокладке пробкой 9 с вентиляционным отверстием, служащим для выхода газов. В пробке под отверстием установлена пластинка-отражатель, устраняющая выбрызгивание электролита. В новых аккумуляторах под пробкой ставится герметизирующий диск, который при эксплуатации батареи удаляется. В аккумуляторах некоторых типов отверстие в крышке для заливки электролита закрывают на прокладке глухой пробкой с уплотнительной резиновой втулкой внутри, а для выхода газов имеется специальный вентиляционный штуцер с отражателем внутри. Такое устройство заливного отверстия позволяет более удобно доливать электролит до необходимого уровня.

Аккумуляторные батареи выпускаются с отформованными пластинами, но обычно в сухом виде без электролита. Поэтому новые батареи нужно заполнить электролитом и зарядить.

Аккумуляторные батареи выпускаются с тремя или шестью элементами в одном блоке; в последнем случае выпускаются с поперечным или продольным расположением элементов. Батареи, предназначенные для грузовых автомобилей, обычно устанавливают в деревянном корпусе с крышкой. Батареи, используемые на автомобилях высокой проходимости, снабжаются герметизированными (гидростатическими) пробками, которые устраняют возможность проникновения воды в аккумулятор при преодолении автомобилем бродов.

Основные показатели аккумуляторной батареи

Основными показателями, определяющими работу аккумулятора и аккумуляторной батареи, являются ее напряжение и емкость.

Один аккумулятор (элемент) аккумуляторной батареи, независимо от количества пластин в нем и их размера, в исправном и заряженном состоянии дает напряжение, равное в среднем 2 в. При полной разрядке напряжение в нем уменьшается до 1,7 в.

Емкостью аккумулятора называется способность его при зарядке поглощать, а затем отдавать то или иное количество электрической энергии при разрядке током постоянной величины до предельно допустимого падения напряжения.

Емкость зависит от числа пластин в банке (камере) и их размера и измеряется в ампер-часах (а •ч). Емкость определяется умножением разрядного тока в амперах на время в часах, в течение которого аккумулятор может разряжаться при данном токе. Например, если аккумулятор в определенных условиях может отдавать при разрядке ток 4 а в течение 5 ч, то его емкость равна 20 а •ч.

Напряжения одного аккумулятора недостаточно для питания приборов электрооборудования автомобиля. Для получения большего напряжения несколько аккумуляторов объединяют в одном моноблоке в батарею и соединяют один с другим последовательно при помощи свинцовых перемычек. При этом положительный вывод одного элемента соединяют с отрицательным выводом другого элемента и т. д.

При последовательном соединении аккумуляторов напряжение на крайних выводных клеммах батареи увеличивается пропорционально числу аккумуляторов, а емкость всей батареи остается равной емкости одного аккумулятора.

Емкость, указываемая в марке батареи, называется номинальной емкостью и обеспечивается при вполне определенных условиях разрядки: при 10-часовом режиме и средней температуре электролита 30° (ГОСТ 959—51).

Емкость батареи не является постоянной величиной. При увеличении разрядного тока и понижении температуры электролита емкость батареи значительно уменьшается. Это необходимо учитывать при эксплуатации батареи.

На автомобилях с напряжением в сети электрооборудования 12 в ставят батареи того же напряжения, состоящие из шести аккумуляторов или двух батарей с напряжением 6 в, соединенных последовательно. На автомобилях, имеющих напряжение в сети, равное 24 в, ставят две батареи с напряжением 12 в, соединенные последовательно (МАЗ-500, КрАЗ-257). В том случае, когда напряжение 24 в используется только в момент включения стартера, применяют две батареи с напряжением 12 в, включенные параллельно, с автоматическим переключением их на последовательное соединение в момент пуска двигателя (МАЗ-200, КрАЗ-214). На легковых автомобилях батарея обычно расположена под капотом двигателя. У грузовых автомобилей батарея часто устанавливается или под сиденьем водителя, или на подножке кузова.

В электрооборудовании автомобилей применяют однопроводную систему проводки, при которой одним из проводов служат металлические части автомобиля, его масса, поэтому одну клемму батареи (обычно минусовую) замыкают на массу, а другую (плюсовую) соединяют с сетью,

У некоторых моделей автомобилей соединение минусовой клеммы батареи на массу осуществлено через специальный выключатель. Это позволяет отключать батарею от сети в нерабочем состоянии, что предохраняет батарею от возможной утечки тока.

В корпусе (рис. 3) выключателя типа ВБ-318 установлен шток с кнопкой. На нижнем конце штока установлены основные подвижные контакты с пружинами и вспомогательный контакт. Подвижные контакты расположены над неподвижными контактами, закрепленными в корпусе. Контакт соединен с массой, а изолированный контакт соединен с клеммой, к которой крепится провод от минусовой клеммы батареи. Шток с контактами отжимается кверху пружинами. Вверху на корпусе установлена стопорная пластина с пружиной и малой кнопкой.

Рис. 3. Выключатель батареи

Включение батареи в сеть производится нажатием на основную кнопку. При этом неподвижные контакты замыкаются сначала вспомогательным подвижным контактом, а затем основными контактами, и батарея соединяется на массу. При этом шток 6 во включенном положении фиксируется стопорной пластиной 8, заходящей под действием пружины в выточку на штоке.

Выключение батареи производится нажатием на боковую кнопку, которая сдвигает стопорную пластину и освобождает основной шток 6. Шток, поднимаясь вместе с контактами, размыкает цепь батареи. Некоторая неодновременность последовательного замыкания и размыкания вспомогательного и основных контактов снижает подгорание контактов.

Аккумуляторные батареи имеют определенную маркировку (в соответствии с ГОСТом 959—51). Например, на автомобиле ГАЗ-51А установлена батарея марки 3-СТ-70-ВД. Первое число обозначает количество аккумуляторов (элементов) в батарее, а следовательно, и общее напряжение, считая, что каждый элемент имеет напряжение 2 в. Второе число обозначает номинальную емкость батареи в а •ч. Буквы СТ означают, что батарея — чартерного типа. Материал бака обозначают буквами: Э — эбонит, П — асфаль-то-пековая масса с кислотоупорными вставками, В — асфальто-пековая масса без кислотоупорных вставок. Материал сепараторов обозначают буквами: Д — дерево, ДС — дерево и стекловойлок, М — мипласт, МС — мипласт и стекловойлок, Р — мипор. Буква 3 означает, что батарея сухо-заряженная.

Подготовка батареи к эксплуатации

Новые сухие батареи нужно заполнить электролитом и зарядить.

Электролит готовится из аккумуляторной кислоты и дистиллированной воды. Для приготовления электролита применяется стойкая против действия серной кислоты посуда — керамическая, эбонитовая, стеклянная. В посуду сначала заливают дистиллированную воду, а затем осторожно и постепенно — кислоту.

Электролит для заливки батареи применяют определенной плотности (1,27—1,34), зависящей от типа батареи, климатических условий и времени года.

Необходимая плотность электролита устанавливается в соответствии с заводской инструкцией.

Плотность электролита измеряют специальным ареометром с пипеткой.

Электролит в элементы батареи ^необходимо заливать до уровня на 10—15 мм выше предохранительного щитка, установленного над сепараторами. Уровень проверяют стеклянной трубкой, которую опускают до упора в щиток, и, закрыв верхнее отверстие, вынимают. По высоте столбика электролита, находящегося в трубке, определяют его уровень.

В батареях с автоматической регулировкой уровня нужно вывернуть пробки и надеть их плотно резиновыми втулками на предварительно вытертые вентиляционные штуцеры, после чего залить электролит в элементы до уровня на 15—20 мм ниже верхнего края горловины заливного отверстия. При снятии пробок со штуцеров электролит в элементах установится на нормальном уровне.

Через 3—6 ч (в зависимости от типа батареи) после заливки электролита батарею ставят на зарядку, соединяя положительную клемму батареи с положительным полюсом источника тока, а отрицательную — с отрицательным.

Зарядку ведут при нормальном для каждого типа батареи токе, указанном в заводской инструкции. Зарядку продолжают до тех пор, пока во всех аккумуляторах (элементах) батареи не наступит обильное газовыделение (кипение), а напряжение и плотность электролита не останутся постоянными в течение 3 ч.

При зарядке следует следить, чтобы температура электролита не повышалась выше 45 °С.

К концу первой зарядки проверяют плотность электролита, и в случае необходимости доводят ее во всех элементах до нормальной, для чего отсасывают часть электролита из элемента резиновой грушей и доливают дистиллированную воду или электролит повышенной плотности.

После первой зарядки новые батареи могут быть пущены в эксплуатацию. В целях удлинения срока службы батареи при эксплуатации полезно провести несколько зарядных циклов, разряжая после зарядки батарею номинальным разрядным током до падения напряжения одного элемента до 1,7 в.

Уход за батареей и ее неисправности

К основным элементам ухода относятся:1) проверка креплений и очистка батареи;2) очистка и затяжка клемм;3) проверка уровня электролита и доливка его;4) проверка степени заряженности батареи;5) проверка зарядного тока;6) предохранение батареи от быстрой разрядки и коротких замыканий.

Проверка креплений батареи необходима для избежания поломок батареи

от тряски при ослабевших креплениях. Крепление батареи в гнезде должно быть плотным. На грузовых автомобилях под батарею следует установить резиновые прокладки. Периодически необходимо проверять, нет ли трещин в моноблоке и утечки из него электролита. Также следует проверять целость заливочной мастики на крышке.

Очистка батареи нужна для устранения замыкания аккумуляторов (элементов) по загрязненной поверхности батареи, обычно смачиваемой расплескивающимся электролитом. Поверхность батареи следует очищать чистой тряпкой. Электролит, пролитый на поверхность батареи, надо вытереть чистой ветошью, смоченной в растворе нашатырного спирта или кальцинированной соды (10%-ный раствор). Следует также прочищать вентиляционные отверстия во избежание повреждения банок от скапливающихся в них газов.

Очистка и затяжка клемм необходимы для обеспечения надеяшого контакта в клеммах. Клеммы надо хорошо зачищать, плотно затягивать и снаружи смазывать тонким слоем технического вазелина или солидола для предотвращения их окисления. Также необходимо подтягивать крепление провода к массе. Нельзя допускать сильного натяжения проводов, так как это может привести к повреждению выводных клемм и образованию трещин в мастике.

Проверка уровня электролита необходима вследствие того, что уровень электролита может понижаться в результате испарения и выкипания электролита. При уменьшении уровня электролита в банки батареи доливают дистиллированную воду, так как выкипает только вода.

Периодически следует проверять плотность электролита при полностью заряженной батарее и следить за тем, чтобы она была одинакова во всех банках, доводя плотность электролита в случае необходимости до нормы.

Степень разряженности батареи можно проверять по плотности электролита или с помощью вольтметра с нагрузочной вилкой.

Батарея всегда должна быть в заряженном состоянии. Если при проверке батарея окажется неполностью заряженной, необходимо принять меры к ее зарядке, установив причины, нарушающие нормальную работу батареи.

Батарею, разряженную более чем на 25% зимой и более чем на 50% летом, необходимо снять и подзарядить.

Если батарея находится длительное время в неполностью заряженном состоянии, то это приводит к порче ее пластин. В зимнее время электролит в разряженной батарее может замерзнуть и разрушить батарею.

Контроль величины зарядного тока и режима зарядки батареи можно ориентировочно проводить по показаниям амперметра, имеющегося в системе электрооборудования автомобиля.

Если батарея заряжена, стрелка амперметра почти не отклоняется от среднего положения даже при повышенном числе оборотов коленчатого вала двигателя. При разряженном состоянии батареи, в случае повышения числа оборотов вала двигателя, стрелка амперметра значительно отклоняется в сторону зарядного тока вследствие возрастания тока, идущего на зарядку батареи. Отклонение стрелки амперметра при работе автомобиля в обратную сторону или включение сигнальной лампы указывает на разряд батареи.

Предохранение батареи от быстрой разрядки и коротких замыканий необходимо для избежания коробления пластин и выкрашивания активной массы. Поэтому нельзя на продолжительное время и несколько раз подряд включать стартер, который потребляет очень сильный ток. Не рекомендуется пускать стартером сильно охлажденный двигатель в зимнее время при низкой температуре. Необходимо двигатель предварительно прогреть и вручную несколько раз провернуть коленчатый вал.

При осмотре батареи нельзя подносить к ней открытый огонь, так как может произойти вспышка газов над электролитом.

При переходе с летней эксплуатации на зимнюю или обратно необходимо доводить плотность электролита до рекомендуемого значения.

В зимнее время открытые батареи следут утеплять.

Для увеличения срока службы батареи рекомендуется периодически ставить ее на контрольно-тренировочный зарядный цикл на зарядной станции, заключающийся в неоднократной разрядке и зарядке батареи.

При установке батареи на автомобиль надо правильно соединить ее клеммы с массой и цепью. Правильность соединения можно проверить по амперметру. При разрядке батареи стрелка должна отклоняться в соответствующую сторону (к знаку плюс). Полярность клемм батареи можно определить по знакам плюс и минус на клеммах, а при их отсутствии — путем опускания проводов от клемм в подкисленную воду или с помощью сырой картофелины. В подкисленной воде на отрицательном (минусовом) проводе происходит бурное выделение пузырьков газа, а вокруг положительного (плюсового) провода, воткнутого в картофель, появится зеленое пятно.

Хранение аккумуляторной батареи. Если батарея снята с автомобиля и поставлена на сравнительно непродолжительное хранение, ее необходимо предварительно полностью зарядить, проверить уровень электролита,, довести плотность электролита до нормального значения (не выше 1,280 при 15 °С), тщательно очистить, протерев снаружи моноблок и крышки, зачистить клеммы и поставить в чистое вентилируемое помещение с постоянной температурой.

В целях избежания внутреннего саморазряда и устранения усиленной коррозии положительных пластин хранение батарей с электролитом предпочтительнее производить в холодном помещении при постоянной температуре не ниже —25 °С и не выше 0 °С. При хранении батарей в таких условиях необходимо ежемесячно проверять плотность электролита, подзаряжая батареи только в случае падения плотности ниже допустимого значения (ниже 1,230 при 15 °С). При нормальном состоянии батарей при этом способе хранения заряжать их необходимо только перед пуском в эксплуатацию.

При хранении батарей при температуре выше 0 °С их необходимо ежемесячно заряжать для восстановления емкости, теряемой в результате саморазряда.

При указанных способах хранения батареи всегда подготовлены к работе.

При длительном хранении, например более полугода, а также при невозможности производить частую подзарядку батареи, необходимую при первом способе хранения, практикуют способ хранения батарей без электролита. В этом случае батарею следует полностью разрядить током, соответствующим 1/20 емкости, до падения напряжения на один аккумулятор до 1,7 в, затем, сняв батарею, вылить из нее электролит и тщательно промыть банки дистиллированной водой. Промывку надо производить до тех пор, пока вода не перестанет окисляться. После промывки и тщательной просушки батареи надо закупорить плотно отверстия ее банок и очистить снаружи и в таком виде ставить батарею на длительное хранение.

Неисправности аккумуляторной батареи. Основными неисправностями аккумуляторной батареи являются: недостаточная заряженность, перезарядка, сульфатация пластин, уменьшение емкости, внутренний саморазряд, коробление пластин, подтекание батареи.

Недостаточная заряженность батареи получается вследствие малого зарядного тока, плохого крепления проводов и окисления клемм, утечки или большого расхода тока при неработающем двигателе, неумелого пользования стартером. Недостаточный зарядный ток может иметь место при неправильной регулировке реле-регулятора или плохой работе генератора. Признаками недостаточной заряженности батареи являются малая плотность электролита в ней и недостаточное напряжение батареи.

Перезарядка батареи происходит при чрезмерно сильном зарядном токе вследствие неправильной регулировки реле-регулятора. Признаком перезарядки являются частое кипение электролита и быстрое понижение его уровня.

Сульфатация пластин заключается в том, что пластины покрываются белым кристаллическим налетом, который затрудняет прохождение электрического тока и проникновение электролита к активной массе пластин. Вследствие этого замедляются химические процессы и уменьшается емкость батареи.

Внешним признаком сульфатации является сильное падение напряжения батареи при увеличении нагрузки. Например, при включении стартера или даже сигнала электрические лампочки, горевшие достаточно ярко, почти гаснут. При проверке нагрузочной вилкой элементов батареи, подвергшихся сульфатации, напряжение на полюсах элементов быстро снижается.

Сульфатация происходит в результате сильной разрядки батареи или длительной ее работы в неполностью заряженном состоянии. Чтобы предохранить батареи от сульфатации, необходимо систематически контролировать и поддерживать их в заряженном состоянии, а также периодически проводить контрольно-тренировочные циклы на зарядной станции. Вследствие сильной сульфатации пластины батареи выходят из строя и не поддаются ремонту и восстановлению.

Уменьшение емкости происходит из-за уменьшения рабочей поверхности пластин, вызванного выкрашиванием активной массы пластин или понижением уровня электролита. Признаком уменьшения емкости является быстрое закипание электролита во время зарядки при незначительном повышении его плотности, а также быстрая разрядка батареи при ее работе. Выкрашивание активной массы получается в результате сильной перезарядки батареи или при разрядке батареи большим током, например при длительном пользовании стартером.

Внутренний саморазряд батареи происходит в случае применения для электролита недистиллированной воды. Признаком неисправности является быстрая разрядка даже неработающей батареи. Для устранения этой неисправности батарею разряжают и тщательно промывают дистиллированной водой с последующим заполнением ее электролитом надлежащего качества и плотности и зарядкой.

Короткое замыкание внутри банок батареи возникает из-за разрушения деревянных сепараторов вследствие применения электролита слишком большой плотности. При этом выпадающая активная масса замыкает пластины. При внутреннем замыкании батареи быстро снижается ее напряжение, уменьшаются плотность электролита и емкость батареи.

Коробление пластин получается при чрезмерном разрядном токе в случае пользования стартером длительное время и при коротких замыканиях в цепи. В этом случае батарея выходит из строя.

Читать далее: Щелочные железо-никелевые аккумуляторные батареи

Категория: - Электрооборудование автомобилей

Главная → Справочник → Статьи → Форум

stroy-technics.ru


Смотрите также