LJ Magazine. Вечный аккумулятор


«Вечный» аккумулятор случайно открыт учеными из Калифорнии

Химики создали батарею с практически бесконечым ресурсом работы

Электромобили, ноутбуки, смартфоны и множество других электронных гаджетов работают от литий-ионных аккумуляторов, но возможность перезарядки у них ограничена двумя-тремя тысячами циклов, после чего эффективность их работы значительно снижается. Кроме того, литий – основа большинства современных батарей – имеет свойство со временем окисляться, что также приводит потере их первоначальных свойств.

Американские ученые из Калифорнийского университета в Ирвайне попробовали применить золотую нанопроволоку для хранения электрического заряда, и оказалось, что разработанная ими система превосходит традиционные литиевые батареи. Она выдерживала 200 тысяч циклов перезарядки без существенного ухудшения свойств и признаков коррозии.

Основа вечных батарейОснова "вечных" батарей - золотые нанопровода, покрытые оксидом марганца, в электролитическом геле

Однако, пока они не до конца понимают, почему это происходит. Первоначальным замыслом эксперимента было сделать батарею с твёрдым электролитом, в которой вместо жидкого электролита используется электролитная паста. Жидкостные батареи, к которым относятся литиевые, являются крайне огнеопасными и чувствительными к воздействию температур. Например, при коротком замыкании литий-ионные аккумуляторы начинают выделять водород, который может образовывать с воздухом взрывоопасную смесь. Исследователи экспериментировали с использованием густых токопроводящих паст.

«Мы начали цикл перезарядок устройства, а затем поняли, что оно не собирается «умирать», - отмечает руководитель исследования Реджинальд Пеннер (Reginald Penner). - Однако пока нам до конца не понятен механизм этого явления».

неубиваемая батарея

По новой технологии для создания батарей используется золотая нанопроволока, по размерам не толще бактерии, покрытая оксидом марганца и защищённая слоем электролитной пасты. Паста взаимодействует с оксидным покрытием для предотвращения коррозии, выполняя роль своеобразной защиты. Чем длиннее нанопроволока, тем больше площадь поверхности, и тем больший заряд она может удерживать. Другие исследователи уже долгое время проводили эксперименты с нанопроволокой, но в отличие от них учёные университета в Ирвайне впервые предложили использовать защитную пасту.

«Паста делает гораздо больше, чем просто держит провода вместе. По-видимому, она делает оксид металла более мягким и устойчивым к образованию трещин», — сказал Пеннер.

Открытие имеет огромных потенциал в направлении увеличения срока службы батарей в бытовой электронике, но пока тестовая платформа не является настоящей батареей. В батареях имеются анод, через который электрический ток входит в систему, и катод, через который он выходит. Вместо этого учёные связали между собой два катода, которые сменяют друг другом при зарядке. Непрерывная цикличность смены катодов делает идеальную систему для тестирования многократных перезарядок.

вечный аккумулятор

Пеннер говорит, что это похоже на непрерывный процесс переливания воды из одной чашки в другую и обратно. После нескольких сотен циклов переливания некоторое количество воды, как правило, выливается, уменьшая емкость системы. Но технология Пеннера при переливании воды между «чашками» 200 тысяч раз теряет всего лишь около 5 процентов.

Несмотря на использование в этом эксперименте незначительного количества золота, это может сделать производство таких батарей дорогостоящим. Пеннер предполагает, что вместо золота можно будет применять такой более распространённый металл, как никель.

Результаты исследования опубликованы в научной статье журнала ACS Energy Letters, также некоторые подробности сообщаются в пресс-релизе университета.

Разработчики элементов хранения энергии непрерывно трудятся над созданием более совершенных батарей, так как многие устройства зачастую не отвечают современным потребностям. Так, ученые университета штата Колорадо предложили технологию создания аккумуляторов из медной пены под названием Prieto Battery. По сути, это 3-D батареи, которые дешевле в производстве, быстрее заряжаются, безопаснее, компактнее и менее токсичны. А вот исследователи из британского Кембриджа разработали суперэффективные литий-воздушные батареи, в которых используются высокопористые графеновые электроды.

Источник: gearmix.ru

Понравилась статья? Поделитесь ею и будет вам счастье!

Loading...

ecotechnica.com.ua

"Вечный" аккумулятор - Домашнему мастеру - Сборник - Познавательный Интернет-журнал "Умеха

"Вечный" аккумуляторОсновные качества самодель­ного аккумулятора, изображен­ного на рисунке, следующие: он прост, дешев, выдерживает разрядный ток большой силы, не боится коротких замыканий, обладает высокой отдачей и очень низким саморазрядом. Весь уход за ним сводится к до­ливанию воды. С течением вре­мени аккумулятор не только не снижает своих рабочих ка­честв, а, наоборот, повышает. Чем плохая характеристика! Пожалуй, стоит сделать такой аккумулятор. Как вы думаете?

 

Для изготовления одного эле­мента аккумулятора емкостью в 50 Ач требуются следующие материалы: четыре угольных стержня высотой 15 см и диа­метром 2 см, 720 г окиси свин­ца, 360 г поташа, 480 г серебристого графита, 400 г воды, стеклянный или пластмассовый сосуд, немного тнани и бечевки.

 

Угли можно взять от старого элемента Лекланше, от дугово­го фонаря и т. п. Угольные стержни должны быть пропита­ны парафином или воском. Для этого их на 15—20 мин. погру­жают в расплавленный воск или парафчн, а лучше в их смесь. После этого их охлаж­дают, тщательно протирают сухой тряпкой и затем тряпкой с графитом. На концы стерж­ней надеваются колпачки: для катодов желательно из чистой меди, для анодов из никелиро­ванного железа. В худшем слу­чае концы угольных стержней туго обматываются медной про­волокой.

 

Места соединений колпачков со стержнями должны быть по­крыты смолкой или каким-либо прочным лаком для предохранения от окисления. Когда угли подготовлены, приступают к из­готовлению активной массы, со­стоящей из 3 весовых частей поташа, 6 весовых частей гра­фита и 9 весовых частей окиси свинца. Вместо окиси свинца можно воспользоваться сухими свинцовыми белилами, суриком или активной массой старых свинцовых аккумуляторов.

 

Серебристый графит можно заменить мелким угольным по­рошком, приготовленным из угольных стержней элемента Лекланше.

 

Предварительно угольные стержни нужно хорошо прока­лить, чтобы удалмть из них минеральные масла. Вместо серебристого графита мож­но воспользоваться графитированнымм сортами конса, правда, с некоторым ухудше­нием свойств аккумулятора. Эти вещества очень тщательно растираются в ступке и пере­мешиваются. От тщательности растирания и перемешивания активной массы зависит каче­ство аккумулятора. Затем эту массу смачивают электролитом и вновь перемешивают. Элек­тролита добавляется столько, чтобы смесь напоминала очень густое тесто. Когда ктивная масса готова, раскладывают на столе кусок ткани (типа мит­каль), накрывают его сверху листом промокательной бумаги такого же размера, наносят на этот лист активную массу и все это оборачивают вокруг угольного стержня.

 

Активная масса должна рас­полагаться вокруг стержня ров­ным и плотным слоем толщи­ной в 1 см и высотой 12 см. Низ угольного стержня должен быть обязательно покрыт слоем активной массы. Дно тканевой оболочки заворачивается напо­добие обычного кулька, а верх­няя часть мешочка обвязывается ниткой вокруг уголь­ного стержня так, чтобы нит­ка не касалась угля. Электрод обматывается суровой нитью сначала вертикально, затем го­ризонтально и как можно ту­же. Положительные и отрица­тельные электроды по своему устройству совершенно одина­ковы. Между окончательно со­бранными электродами ставят­ся крестовины или прокладки из изоляционного материала (стекло, резина и т. п.), элек­троды связываются в один пу­чок толстой нитью и опускают­ся в резервуар с электролитом. Электролит представляет собой раствор поташа в дистиллированной или дождевой воде (35 г поташа на 100 куб. см воды). Электролита заливается столь­ко, чтобы верхняя часть ме­шочка возвышалась над его поверхностью на 1-2 см.

 

 

Первая зарядка производится более слабым током, до тех пор, пока электроды не начнут интенсивно «кипеть». После­дующие зарядки можно производить током большей силы. Емкость аккумулятора после первой зарядки около 25 Ач, в дальнейшем она возрастает до 50 Ач.

 

Правильно собранный акку­мулятор должен иметь следующие данные: средняя ЭДС 1,25 в, внутреннее сопротивление 0,1 Ома, сила зарядного то­ка 25 А, сила разрядного то­ка 12 А.

 

После длительного срока службы ЭДС аккумулятора с 1,25 в возрастает до 1,6 в. Для получения более высоких на­пряжений аккумуляторы мо­гут соединяться последова­тельно.

 

Таким же способом можно собирать и маленькие плоские аккумуляторы величиной с ба­тарейку от карманного фонаря. Делать их еще проще. Они состоят всего лишь из двух элек­тродов. Правда, емкость их бу­дет небольшой — 0,5-1,5 Ач.

 

Для аккумулятора емкостью в 0,5 Ач требуются два уголь­ных стержня 0,5х5 см (от ба­тареи карманного фонаря), 6 г серебристого графита. 10 г оки­си свиниа и 17 г поташа. Актив­ная масса для любительских аккумуляторов может иметь следующий состав: на 1 весовую часть окиси свинца добавляет­ся 1 весовая часть графита. Смесь увлажняется электроли­том из расчета 15 весовых ча­стей электролита на 100 весо­вых частей активной массы. В аккумуляторах на 0,5 Ач ак­тивная масса располагается во­круг угольных стержней более тонким слоем (около 3 мм). Первая зарядка таких аккуму­ляторов производится более слабым током, порядка 100 мА. В остальном устройство малога­баритных аккумуляторов и их свойства ничем не отличаются от аккумулятора емкостью на 50 Ач.

umeha.3dn.ru

Гонконг: Ученые изобрели «вечный» аккумулятор

Гонконг: Ученые изобрели «вечный» аккумулятор

19.03.12 | Рубрика: Альтернативные источники тока. Просмотры: 4 850

Загрузка...

Учеными из Гонконга было опубликовано сообщение, что новые аккумуляторные батареи сделаны на основе графена, получающего энергию из окружающего тепла. Устройство использует тепловую энергию ионов в растворе, преобразуя ее в электричество. На данный момент результаты их исследований проходят стадию рецензирования. Но, если открытие будет подтверждено, конструкция может найти применение в самых разнообразных практических приложениях, подразумевающих использование возобновляемых источников энергии, включая электропитание искусственных органов от тепла тела человека.

В водных растворах ионы движутся со скоростью в сотни метров в секунду при комнатной температуре. Тепловая энергия этих ионов может достигать нескольких килоджоулей на килограмм на градус по шкале Кельвина. Несмотря на это, до сих пор существует достаточно мало научных групп, которые в своих работах попробовали использовать эту энергию во благо с целью преобразования ее в электроэнергию. Именно в этом направлении начала свою работу группа из Hong Kong Polytechnic University (Гонконг). Результаты их экспериментов были опубликованы в журнале arXiv.

В рамках своей работы группа создала новый тип аккумулятора, просто прикрепив серебряные и золотые электроды к полоске из графена. В отчете ученые продемонстрировали, как шесть подобных устройств помещались в раствор, содержащий ионы хлорида меди, производя при этом напряжение более 2 В. Произведенной таким образом энергии было достаточно, чтобы заставить гореть коммерческий красный светодиод, доступный в любом магазине электроники.

Предложенная схема в корне отличается от обычных литий-ионных аккумуляторов, преобразующих химическую энергию в электричество. Функционирование предложенного аккумулятора непрерывно; устройство работает исключительно за счет получения тепловой энергии окружающих ионов хлорида меди. В свою очередь, ионы пополняют энергию из окружающего сосуд с раствором пространства, т.е. ее запас можно считать бесконечным. По мнению разработчиков, отдача тепла может продолжаться вечно, пока устройство не будет уничтожено. До сих пор не существовало никаких аналогов подобной идеи.

По словам исследователей, принцип работы аккумулятора во многом похож на солнечную ячейку. Ионы меди постоянно сталкиваются с полоской графена, находящейся внутри батареи. Энергии этого столкновения достаточно для вытеснения электронов из графена, которые могут либо соединиться с ионом меди, либо пройти через полоску углеродного материала в электрическую цепь. Поскольку электроны движутся через чистый графен на очень больших скоростях (представляя собой практически релятивистские частицы, не имеющие массы покоя), через углеродный материал они проходят намного быстрее, чем через раствор, содержащий ионы. Таким образом, рекомбинация сформированных свободных электронов не значительна, и их большая часть уходит в электрическую цепь.

В рамках своих экспериментов ученые обнаружили, что напряжение, выдаваемое устройством на выходе, может быть увеличено простым нагреванием системы или ускорением ионов при помощи ультразвука. Оба эти метода работают, поскольку они увеличивают кинетическую энергию ионов. Анализ показал, что в эксперименте могут быть использованы и другие растворы, хотя они дают не такое высокое выходное напряжение.

По словам разработчиков, решающее значение для работы аккумулятора имеет уникальный атомарный слой графена. В рамках своих исследований они экспериментировали с графитом, углеродными нанотрубками и тонкими пленками, но не смогли получить сходных результатов. Эти материалы производят существенно более низкое напряжение (порядка нескольких микровольт), которое может рассматриваться, как шум.

По мнению коллег ученых из США, предложенная концепция выглядит весьма привлекательно, однако перед тем, как первый подобный аккумулятор поступит в производство, предстоит проделать большую работу, чтобы хотя бы оценить, может ли подход дать достаточное количество энергии и плотность мощности (мощность на килограмм веса аккумулятора) для практических применений. Со своей стороны, ученые из Гонконга планируют продолжить работу над конструкцией в попытках повысить выходное напряжение.

Источник: sci-lib

Метки:: Hong Kong Polytechnic University, Гонконг, графен, графеновый суперконденсатор, двумерный графен

www.battery-industry.ru

Вечная батарейка Карпена - Мастерок.жж.рф

Помните, как я вам показывал Батарейка 2000-летней давности? А вот вам еще одна батарейка.

Невозможность создания вечного двигателя постулируют как первый, так и второй законы термодинамики. Тем не менее очередь из желающих поднять самого себя за волосы не иссякала никогда.

Несмотря на то, что с 1775 года Парижская академия наук не рассматривает проекты вечного двигателя, многие из воплощений идеи perpetuum mobile принесли ощутимую практическую пользу. Например, батарея румынского инженера Николае Василеска-Карпена  (Nicolae Vasilescu-Karpen), который изобрел это устройство в 1950 году. Его батарея работает по сей день, то есть уже 65 лет, и хранится в Национальном техническом музее Румынии.

Почему это происходит – не могут ответить до сих пор. Ученые склоняются к тому, что в батарее кроется какой-то хитроумный секрет и она является банальной мистификацией. Впрочем, очень талантливой.

Давайте узнаем подробности …

 

Хотя устройство этой батарейки было запатентовано очень давно, ученые до сих пор не знают, или не сошлись во мнении, каким именно образом и на каких принципах работает это устройство, имеющее научное название — термоэлектрическая батарея, работающая при постоянной температуре. Именно поэтому существование этой батарейки считается в научных кругах антинаучным фактом, ибо вечный двигатель с точки зрения современной науки существовать не может. Единственный работающий экземпляр «батарейки Карпена» находится сейчас в кабинете директора Национального технического музея.

Опытный образец состоит из двух гальванических элементов, приводящих в движение гальванометрический двигатель, и выключателя, который на каждые пол-оборота двигателя замыкает цепь, а затем ее размыкает. Время обращения двигателя тщательно подобрано таким образом, что его достаточно для того, чтобы гальванический элемент полностью перезарядился, сменив, при этом, свою полярность. Но единственной целью применения электродвигателя и пластин выключателя является непрерывная демонстрация работоспособности «батарейки Карпена» в течение длительного времени, сейчас, конечно, это можно сделать другими, более наглядными способами.

 

 

По задумке автора изобретения, задача мотора и пластинки состояла только в том, чтобы продемонстрировать, что батарейки фактически продолжают постоянно генерировать электроэнергию. Больше мотор и пластинка ни для чего не нужны (а сейчас и подавно, так как любой простейший измерительный прибор позволит без проблем определить какие угодно параметры на выходе батареек, зафиксировав тем самым факт выработки электричества).

В 2006 году, 27-го февраля, в музей прибыли журналисты румынской газеты ZIUA (День) для того, чтобы взять интервью у директора Дьяконеску. Он снял прибор с полки и позволил журналистам замерить параметры изобретения на выходе с помощью обычного цифрового универсального измерительного прибора. Батарейки показали 1 вольт – так же, как и 1950-ом году. Журналисты признали, что «устройство батареи Карпена отличается от устройства обычной термоэлектрической батареи, которое изучается в рамках физики в 7-ом классе обычной средней школы». Отмечается, что один из электродов устройства Карпена сделан из золота, а второй из платины. Между ними залита серная кислота высокой степени очистки, в качестве электролита.Дьяконеску подчеркнул, что, что если увеличить размеры прибора, то, соответственно, можно получать больше энергии на выходе».

Сообщается, что батарея Карпена в свое время была неоднократно представлена вниманию научного сообщества – на научных конференциях в Париже, Бухаресте и Болоньи. Тогда очень живо обсуждался принцип ее работы. Исследователи из Университета в Брашове и Политехнического университета в Бухаресте (Румыния) проводили целые научные исследования изобретения, но так и не пришли к однозначному выводу, почему устройство все еще работает. В свое время за изобретение отчаянно боролась французская сторона, но румынским ученым удалось отстоять его, оставив прибор в своей стране. И вот спустя годы «адская машинка» продолжает работать, поневоле наводя на мысль о том, что вечный двигатель – уже не фантастика.

 

 

Большинство ученых сходятся во мнении, что прибор работает, используя, все-таки, принцип трансформации тепловой энергии в механическую работу, но Дьяконеску не поддерживает их мнение. Он считает (и его поддерживают все, кто изучал теоретические работы Василеску-Карпена), что батарея, которую сконструировал ученый, бросает вызов второму закону термодинамики (накладывающий ограничение на направление процессов передачи тепла между телами). Поэтому многие считают это изобретение тем самым вечным двигателем второго рода, существование которого считается невозможным согласно тому же второму закону термодинамики.

Если Василеску-Карпен был прав и его принципы верны, это перевернет привычный взгляд на многие физические законы с ног на голову, а, это, в свою очередь, приведет к выводам и открытиям, которые даже сложно прогнозировать. Впрочем, неизвестно, когда это случится, а если и случится, то явно не потому, что кто-то сделает открытие, изучая прибор Карпена. Похоже, что музей не скоро получит необходимую сумму, чтобы организовать изучение или даже безопасную демонстрацию такого редкого изобретения. Может быть, тому причиной вовсе не научная ценность прибора, а электроды, сделанные из золота и платины? Кто знает! Пока изобретение продолжает пылиться на полке в кабинете директора музея…

 

 

Возникает вопрос – если такой бесперебойный и автономный источник питания действительно существует и находится не где-нибудь, а в музее, то почему возле него не «роятся» толпы посетителей и журналистов? Не говоря уже об ученых, которым в первую очередь следовало бы заинтересоваться этим воистину эпохальным открытием. Руководство музея объясняет все просто – изобретение не может участвовать в экспозиции и демонстрироваться ученым и посетителям, так как у музея нет денег на обеспечение должной охраны такого, поистине бесценного, образчика науки.

А пока научный и околонаучный мир бьется над секретом «вечного двигателя» Карпена, ученые из Исследовательской лаборатории ВВС США утверждают, что им открылась технология, благодаря которой вскоре будут созданы, в частности, аккумуляторные батарейки для лэптопа, работающие без подзарядки… 30 лет! Быть может, эта технология стала каким-то невероятным образом известна и Василеску-Карпену, который реализовал ее в своем загадочном приборе?

Вряд ли, утверждают специалисты. Дело в том, что американцы намекают на новейшую технологию, которая подразумевает использование полупроводниковых материалов и радиоизотопов. Речь идет о так называемых бета-гальванических аккумуляторах. Именно они будут играть роль источника энергии. При расщеплении радиоизотопов будет возникать бета-излучение и образовываться электроэнергия. Не пугайтесь – процесс абсолютно безопасен для человека, как утверждают изобретатели. Ну что же, пока румыны ревностно охраняют изобретение своего соплеменника на музейной полке, мир не стоит на месте и создает новые, более компактные, мощные и безопасные источники энергии, которые, хочется верить, войдут скоро в каждый дом.

 

 

[источники]

источники

http://www.infoniac.ru/news/Batareika-Karpena-istochnik-pitaniya-kotoryi-rabotaet-nepreryvno-60-let.html

http://www.horoshienovosti.com.ua/?id=15&text=24900

http://naked-science.ru/article/top/nesostoyavshiesya-vechnye-dvig

 

Что еще вам про батарейки напомнить, вот Ядерная батарейка, а вот Батарея для iPhone 6 на неделю. Вот Мобильные атомные станции для армии, а вот Гидроаккумулирующая электростанция. Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия - http://infoglaz.ru/?p=83557

masterok.livejournal.com

Топливный элемент или вечная батарейка

С каждым годом совершенствуется мобильная электроника, становясь все распространенее и доступнее: КПК, ноутбуки, мобильные и цифровые аппараты, фоторамки и пр. Все они все время пополняются новыми функциями, большими мониторами, беспроводной связью, более сильными процессорами, при этом, уменьшаясь в размерах. Технологии   питания, в отличие от полупроводниковой техники, семимильными шагами не идут.

Имеющихся батарей и аккумуляторов для питания  достижений индустрии становится недостаточно, поэтому  вопрос альтернативных источников стоит очень остро. Топливные элементы на сегодняшний день являются наиболее перспективным направлением. Принцип их работы открт был еще в 1839 году Уильямом Гроуом, который электричество генерировал изменив электролиз воды.

Что такое топливные элементы?

Видео: Документальный фильм, топливные элементы для транспорта: прошлое, настоящее, будущее

Топливные элементы интересны производителям автомобилей, интересуются ими и создатели космических кораблей. В 1965 году они даже были испытаны Америкой на запущенном в космос корабле «Джемини-5», а позже и на «Аполлонах». Миллионы долларов вкладываются в исследования топливных элементов и сегодня, когда  существуют проблемы, связанные с загрязнением окружающей среды, усиливающимися выбросомами парниковых газов, образующихся при сгорании органического топлива, запасы которого тоже не бесконечны.

Топливный элемент, часто называемый электрохимическим генератором, работает  нижеописанным образом.

Схема работы Топливного элемента на водороде

Схема работы Топливного элемента на водороде

Являясь, как аккумуляторы и батарейки гальваническим элементом, но с тем отличием, что хранятся в нем активные вещества отдельно. На электроды они поступают по мере использования. На отрицательном электроде сгорает природное топливо или любое вещество из него полученное, которое может быть газообразным (водород, например, и окись углерода) или жидким, как спирты. На электроде положительном, как правило, реагирует кислород.

Но простой на вид принцип действия, в реальность воплотить не просто.

Топливный элемент своими руками

К сожалению у нас нет фотографий, как должен выглядить этот топливный элекмнт, надеямся на вашу фантазию.

Маломощный топливный элемент своими руками можно изготовить даже в условиях школьной лаборатории. Необходимо запастись старым противогазом,  несколькими кусками оргстекла, щелочью и  водным раствором этилового спирта (проще, водкой), которое будет служить для топливного элемента «горючим».

Стационарная энергоустановка на базе химического топливного элемента

Стационарная энергоустановка на базе химического топливного элемента

Прежде всего, необходим корпус для топливного элемента, изготовить который лучше из оргстекла, толщиной не менее пяти миллиметров. Внутренние перегородки (внутри пять отсеков)  можно сделать немного тоньше – 3 см. Для склеивания оргстекла используют клей такого состава: в ста граммах хлороформа или дихлорэтана растворяют шесть грамм стружки из оргстекла (проводят работу под вытяжкой).

В наружной стенке теперь необходимо просверлить отверстие, в которое вставить нужно через резиновую пробку  сливную стеклянную трубочку диаметром 5-6 сантиметров.

Все знают, что в таблице Менделеева  в левом нижнем углу стоят наиболее активные металлы, а металлоиды высокой активности находятся в таблице в верхнем  правом углу, т.е. способность отдавать электроны, усиливается  сверху вниз и справа налево. Элементы, способные при определенных условиях проявлять себя как металлы или металлоиды, находятся в центре таблицы.

Теперь во второе и четвертое отделение насыпаем из противогаза активированный уголь (между первой перегородкой и второй, а также  третьей и четвертой), который выполнять будет роль электродов. Чтобы через отверстия уголь не высыпался его можно поместить в капроновую ткань (подойдут женские капроновые чулки). 

Топливо циркулировать будет в первой камере, в пятой должен быть поставщик кислорода – воздух. Между электродами будет находиться электролит, а для того, чтобы он не смог просочиться в воздушную камеру, нужно перед засыпкой  в четвертую камеру угля для воздушного электролита, пропитать его раствором парафина в бензине (соотношение 2 грамма парафина на пол стакана бензина). На слой угля положить нужно (слегка вдавив) медные пластинки, к которым припаяны провода. Через них ток отводиться будет от электродов.

Осталось только зарядить элемент. Для этого и нужна водка, которую разбавить с водой нужно в 1:1. Затем осторожно добавить триста-триста пятьдесят граммов едкого калия. Для электролита в 200 граммах воды растворяют 70 граммов едкого калия.

Топливный элемент готов к испытанию. Теперь нужно одновременно налить в первую камеру – топливо, а в третью – электролит. Присоединенный к электродам вольтметр должен показать от 07 вольт до 0,9. Чтобы обеспечить непрерывную работу элементу, нужно отводить отработавшее топливо (сливать в стакан) и подливать новое (через резиновую трубку). Скорость подачи регулируется сжиманием трубки. Так выглядит в лабораторных условиях работа топливного элемента, мощность которого, понятна мала.

Чтобы мощность была большей, ученые давно занимаются этой проблемой. На активной стали разработки находятся метанольный и этанольный топливные элементы. Но, к сожалению, пока на практику их выхода нет.

Почему топливный элемент выбран в качестве альтернативного источника питания

Работающая модель игрушки-электромобиля на водородном топливном элементе

Работающая модель игрушки-электромобиля на водородном топливном элементе

Альтернативным источником питания выбран топливный элемент, поскольку конечным продуктом сгорания водорода в нем является вода. Проблема касается только в нахождении недорогого и эффективного способа получения водорода. Колоссальные средства, вложенные в  развитие генераторов водорода и топливных элементов, не могут не принести свои плоды, поэтому  технологический прорыв и реальное их использование в повседневной жизни, только вопрос времени.

Уже сегодня монстры автомобилестроения: «Дженерал Моторс», «Хонда», «Драймлер Коайслер», « Баллард», демонстрируют автобусы и авто, которые работают на топливных элементах, мощность которых достигает 50кВт. Но, проблемы, связанные с их безопасностью, надежностью, стоимостью  - еще не решены. Как говорилось уже, в отличие от традиционных  источников питания – аккумуляторов и батарей, в этом случае окислитель и горючее подаются извне, а топливный элемент лишь является посредником в происходящей реакции по сжиганию топлива и  превращению в электричество выделяющейся энергии. Протекает «сжигание» только в том случае, если элемент ток отдает в нагрузку, подобно дизельному электрогенератору, но без генератора и дизеля, а также без шума, дыма и перегрева. При этом, КПД намного выше, поскольку отсутствуют промежуточные механизмы.

 

Большие надежды возлагаются на применение нанотехнологий и наноматериалов, которые помогут миниатюризировать топливные элементы, при этом увеличить их мощность. Появились сообщения, что созданы сверх-эффективные катализаторы, а  также конструкции топливных элементов, не имеющих мембран. В них вместе с окислителем подается в элемент топливо (метан, например). Интересны решения, где в качестве окислителя используется кислород, растворенного в воде воздуха, а в качестве топлива – органические примеси, скапливающиеся в загрязненных водах. Это, так называемые, биотопливные элементы.

Топливные элементы, по прогнозам специалистов, на массовый рынок могут выйти уже в ближайшие годы. опубликовано econet.ru

 

P.S. И помните, всего лишь изменяя свое потребление - мы вместе изменяем мир! © econet

Присоединяйтесь к нам в Facebook , ВКонтакте, Одноклассниках

 

econet.ru


Смотрите также