Производство аккумуляторов. Производство аккумуляторов


Оборудование + Технология изготовления 2018

Электрический аккумулятор — это химический источник тока, источник ЭДС многоразового действия, основная специфика которого заключается в обратимости внутренних химических процессов, что обеспечивает его многократное циклическое использование (через заряд-разряд) для накопления энергии и автономного электропитания различных электротехнических устройств и оборудования, а также для обеспечения резервных источников энергии в медицине, производстве, транспорте и в других сферах.

Производство свинцово-кислотных аккумуляторов + видео

Именно аккумуляторы глубокого заряда и разряда применяются в машинах, автомобилях и железнодорожных локомотивах.

Обычно, такие аккумуляторы имеют напряжение от двух вольт до сорока восьми вольт. Внутри аккумуляторов таких находится серия пластин из свинца, а покрывается они кислотой и окисью свинца. Первое, что по технологии начинают производить, это решетки из свинца. Специальное оборудование расплавляет свинец до температуры его плавления и выливает необходимого размера решеточки. Литые решеточки станут позже пластинами элементов питания в аккумуляторах.

Технология производства аккумуляторов предусматривает литье и необходимо специальное литейное оборудование. Когда свинец заливается в форму, то в нее сразу поступает вода, что помогает за короткое время залитый свинец охладить и переместить его на конвейерную ленту. Происходит отлив разных по заряду решеток, одни из них будут служить положительным зарядом, а другие отрицательным. Далее, решетки перемещаются на следующий этап, который предполагает покрытие решеток окисью свинца, а также, кислотой. Составы разноименно заряжены, поэтому решетки разделяются на положительно и отрицательно заряженные. После этого, принято решетки называть пластинами, и они укладываются в поочередности положительных и отрицательно заряженных пластин. Важно, чтобы они размещались попеременно, и чтобы аккумулятор был работоспособным. Сложенные пластины в маленькие контейнеры далее погружаются в небольшие резервуарчики, которые наполнены кислотным раствором. Это поможет пластинам зарядиться. Зарядка может продолжаться сутками и это зависит от того в какую модель аккумулятора попадут пластины. Далее, проходят пластины промывку, причем она делается для того, чтобы частицы кислоты не остались на пластинах.

После этого, цвет пластин меняется, и они теперь становятся темными. На этом этапе пластины теперь меняют свое название на «пластины сухого заряда». Далее, те пластины, которые имеют положительный заряд, обволакиваются материалом содержащим стекловолокно. Далее происходит обволакивание в пластиковый слой. Именно такая одежка помогает предотвратить возникновение короткого замыкания. Пластины соответственно двум зарядам складываются в стопки. Попеременное расположение пластин одетых в пластик и раздетых складывают как коржи торта попеременно. Количество пластин соответствует модели аккумулятора. Далее происходит отчистка пластин. Этот этап отчищает выступающие частицы пластин, которые именуются контактами. После отчистки, контакты покрываются оловом, что позволяет хорошо соединить контакты. Далее проходит еще отчистка контактов покрытых оловом, а после сверху покрывается контакт слоем свинца.

Далее происходит спайка всех контактов в клеммы в определенном порядке. После этого, сборная конструкция именуется элементом. Его вставляют в пластиковую оболочку называемую полипропиленом. После этого, происходит этап проверки на правильность работы элемента. Все заряды должны отвечать своему заряду. Это необходимо, прежде всего, чтобы разметка на корпусе аккумулятора соответствовала заряду. Далее происходит герметизация крышки при помощи запаивания. Клеммы выступают на верху и их заливают дополнительно свинцовым слоем. Далее происходит еще одна проверка на герметичность упаковки элемента. Для этого используют воздух и мыльный раствор. Если появляются места пропуска воздуха, то они повторно пропаиваются.

Параллельно, в других цехах происходит производство маленьких деталей, которые будут участвовать в сборке аккумуляторов. Разъемы производятся для связки различных элементов между собой. Они спаиваются с элементами. После этого, сверху накладывается крышка, что сформирует цельную коробку для элементов аккумулятора. Далее необходимо сделать так, чтобы в местах клеем не попадала влага. Это уязвимое место укомплектовывают прокладкой, например, резиновой. А теперь наступает этап заливки электролита. В роли его участвует кислота. И она заливается в необходимой дозе прямо в только что собранный по частям аккумулятор. Кислота помогает проводить электрический ток, который образуется между пластинами.

Видео как делают:

Некоторые заводы по производству аккумуляторов используют свои технологии. И для автоматизации производства необходимы научные разработки, но все производители роботов и автоматизированного оборудования готовы провести исследования и разработать необходимое оборудование.

Производство литий-ионных аккумуляторов + видео

Литийионный аккумулятор (Li-ion) — тип электрического аккумулятора, который широко распространён в современной бытовой электронной технике и находит своё применение в качестве источника энергии в электромобилях и накопителях энергии в энергетических системах. Это самый популярный тип аккумуляторов в таких устройствах как сотовые телефоны, ноутбуки, цифровые фотоаппараты, видеокамеры и электромобили. Первый литийионный аккумулятор выпустила корпорация Sony в 1991 году.

Литийионный аккумулятор состоит из электродов (катодного материала на алюминиевой фольге и анодного материала на медной фольге), разделённых пористым сепаратором, пропитанным электролитом. Пакет электродов помещён в герметичный корпус, катоды и аноды подсоединены к клеммам-токосъёмникам. Корпус иногда оснащают предохранительным клапаном, сбрасывающим внутреннее давление при аварийных ситуациях или нарушениях условий эксплуатации. Литийионные аккумуляторы различаются по типу используемого катодного материала. Переносчиком заряда в литийионном аккумуляторе является положительно заряженный ион лития, который имеет способность внедряться (интеркалироваться) в кристаллическую решётку других материалов (например, в графит, окислы и соли металлов) с образованием химической связи, например: в графит с образованием LiC6, окислы (LiMnO2) и соли (LiMnRON) металлов.

Первоначально в качестве отрицательных пластин применялся металлический литий, затем — каменноугольный кокс. В дальнейшем стал применяться графит. Применение оксидов кобальта позволяет аккумуляторам работать при значительно более низких температурах, повышает количество циклов разряда/заряда одного аккумулятора. Распространение литий-железо-фосфатных аккумуляторов обусловлено их относительно низкой стоимостью. Литийионные аккумуляторы применяются в комплекте с системой контроля и управления — СКУ или BMS (battery management system), — и специальным устройством заряда/разряда.

В настоящее время в массовом производстве литийионных аккумуляторов используются три класса катодных материалов:

  • кобальтат лития LiCoO2 и твёрдые растворы на основе изоструктурного ему никелата лития
  • литий-марганцевая шпинель LiMn2O4
  • литий-феррофосфат LiFePO4.

Электро-химические схемы литий-ионных аккумуляторов:

  • литий-кобальтовые LiCoO2 + 6C → Li1-xCoO2 + LiC6
  • литий-ферро-фосфатные LiFePO4 + 6C → Li1-xFePO4 + LiC6

Видео как делают литий-ионные аккумуляторы:

Благодаря низкому саморазряду и большому количеству циклов заряда/разряда, Li-ion-аккумуляторы наиболее предпочтительны для применения в альтернативной энергетике. При этом, помимо системы СКУ они укомплектовываются инверторами (преобразователи напряжения).

Читайте также

moybiznes.org

Производство аккумуляторов

Производство свинцово-кислотных аккумуляторов

 

На начальном этапе оксид свинца производится одним из двух способов:

 

  • В котле Бартона формируется мелкодисперсный поток капель свинца по средствам продува воздуха через расплавленный металл. Так образуется оксид свинца, покрывающий ядро из чистого металла.
  • Метод измельчения основан на работе специальной вращающейся мельницы, в которую загружается твердый свинец. Выделяющееся в процессе дробления тепло способствует окислению свинцовой поверхности.

 

Для изготовления решетки используется метод отливки. Причем для автомобильных аккумуляторов деталь производится из деформированного сплава.

Пастирование — следующий технологический этап, на котором получение аккумуляторной пасты достигается смешиванием оксида свинца с серной кислотой, водой, и определенными запатентованными добавками. Для полного высыхания запрессованной в решетку пасты используется высокотемпературная печь.

Процесс электрического формования аккумуляторных пластин происходит в ваннах с разбавленной серной кислотой. Для формирования положительных и отрицательных элементов через пластины пропускается постоянный ток. После полного высыхания деталей, пластины режутся и собираются в аккумуляторные ящики.

Основные элементы оборудования для производства электродов:

 

  • мельницы для помола свинца
  • литейные автоматы для изготовления токоотводов (решеток)
  • намазочные машины и смесители

 

 

Производство литиевых (Li-ion) аккумуляторов

 

Технология изготовления литиевых аккумуляторов схожа с производством никель-кадмиевых ячеек. Покрытие активных электродов осуществляется с применением металлической фольги. Для производства анода используется углерод, для катода – литий металл оксида.

Материалы поступают в производственный цех в виде черного порошка, который трудно отличить визуально друг от друга. Они не должны смешиваться, в противном случае, может произойти разрушение аккумуляторной батареи. Поэтому для производства анодов и катодов желательно использовать отдельные помещения.

Максимальное увеличение площади электродов и, соответственно, повышения тока ячейки, достигается путем измельчения материала. Для анода используется медная фольга, а для катода – алюминиевая. Металл поступает в барабанах, диаметром 500 мм.

Электронные материалы и проводящий состав смешиваются до получения суспензии. Элементы распределяются на плоскости с фольгой, над которой располагается нож.

После нанесения суспензии, пленка подвергается термической обработке в сушильной печи. Далее происходит нарезка высушенной пленки и формирование пластин, которые регулируются определенным размером в зависимости от параметров электрода.

Стоит учесть, что процесс нарезки пленки является весьма ответственной стадией производства, – любые отклонения или неровности могут стать причиной короткого замыкания элементов в ячейке. По этой причине, комплектовать производство необходимо высокоточными машинами, обслуживание которых должно производится опытным и квалифицированным персоналом.

Для сборки ячеек аккумуляторных батарей на крупных заводах применяются полностью автоматизированные производственные линии. Использование ручного метода сборки встречается на небольших предприятиях.

На начальном этапе комплектации компонуются электроды и сепараторы, расположенные между анодными и катодными элементами. При этом применяют два варианта электрода. Выбор зависит от типа ячейки – прямоугольной для плоских элементов и спиральной для цилиндрических ячеек.

Процесс формовки требует прохождения собранной ячейки, как минимум, одного контрольного заряда/разряда аккумуляторной батареи. Это необходимое условие для полной и корректной активации рабочих элементов и материалов, преобразование их в действующее, активное состояние. Вместо стабильного рабочего напряжение используется кривая зарядки постоянного тока.

Метод формовки основан на питании аккумулятора, которое осуществляется по принципу постепенного повышения напряжения. Подобный способ позволяет основной массе элементов литиевой химии создавать на аноде твердый электролит SEI, регулирующий тактовый процесс зарядки батареи в условиях обычного использования аккумулятора.

 

 

 

 

 

Основное оборудование для производства литиевых аккумуляторов:

 

 

 

 

  • масс спектрометр-анализатор химического состава материалов;
  • электронный микроскоп с функцией сканирования;
  • калориметры для определения тепловых свойств ячеек и материалов;
  • вибрационные столы и климатические камеры для настройки производительности ячеек;
  • тестирующее оборудование для определения срока эксплуатации аккумулятора и циклов его зарядки

 

 

promplace.ru

Российское производство литий-ионных батарей станет самым эффективным в мире

Российское производство литий-ионных батарей станет самым эффективным в мире

26.04.10 | Рубрика: Литиевые источники тока, Новости от производителей. Просмотры: 15 586

Загрузка...

Уникальный проект стал возможен, благодаря нанотехнологии, которую изобрели в Институте химии твердого тела и механохимии СО РАН еще в прошлом веке. «Этот сюжет достоин быть вписанным в историю инноваций как пример того, что технический прогресс определяется не научными идеями и открытиями – а технологиями. Мало найти, обнаружить новое явление или эффект – надо еще это явление заставить работать, а эффект применить на практике».

Так Николай Ляхов, главный ученый секретарь Сибирского отделения РАН, член-корреспондент РАН, директор Института химии твердого тела и механохимии, говорит о разработке, которая легла в основу проекта первого в России производства современных литий-ионных аккумуляторов. Одного из двух новосибирских проектов, которые получили одобрение и поддержку РОСНАНО.

Чтобы понять, в чем действительно заключается ценность и уникальность технологии, предложенной сибирскими учеными, начать придется издалека.

Кобальтовые цепи

Начнем с того, что литий-ионные батареи сегодня – отнюдь не экзотика. На таких батарейках работают электронные часы, сотовые телефоны, плееры, переносные электробритвы, фотоаппараты, ноутбуки – вся эта ставшая привычной для нас техника, требующая автономных источников питания.

— Например, на рынке ноутбуков сегодня соревнование идет в двух направлениях, — поясняет Николай Ляхов. – Первое – повышение скорости самого процессора, второе – увеличение запаса времени автономной работы. И как прикажете эти два требования совмещать? Ведь чем мощнее процессор, тем больше энергии он потребляет и тем быстрее ее тратит. Значит, емкость источника питания тоже должна расти. И тут у литий-ионных батарей нет соперников: они – самые емкие.

Литий – элемент необычный. Самый легкий из металлов, он в обычных условиях вступает в реакцию с водой, горит на воздухе, выделяя при этом летучие и едкие щелочные оксиды. Работать с ним невозможно. И все же люди научились использовать литий – связав его с другим металлом в оксидном соединении. Этой цепью, которой ученые «приковали» непослушный элемент, стал кобальт.

Вы спросите, зачем столько трудов? Зачем нужен такой неудобный и сложный в обращении компонент? Да затем, что легкий литий обладает весьма любопытным свойством: его ионы в соединениях с другими металлами способны перемещаться внутри кристаллической структуры вещества. Получается электрический ток – но не электронный, со знаком «минус», как в обычных сетях, а ионный, со знаком «плюс».

Что это нам дает? Раз есть ионный ток, значит, можно сделать ионный накопитель. Причем если в обычном конденсаторе заряд собирается только на поверхности, то в ионном накопителе работает весь объем, а значит, емкость батареи увеличивается в разы.

И все было бы хорошо: литий-кобальтовые батарейки прекрасно ведут себя в часах, мобильниках и прочей мелкой аппаратуре, но когда дело доходит до устройств более масштабных, тут кобальт обнаруживает свои недостатки.

Во-первых, металл это довольно редкий и дорогой – по стоимости приближается к серебру. Для телефона это, может быть, не имеет большого значения, а вот, к примеру, в автомобиле сразу существенно отразится на цене. Есть и второе «но»: в аккумуляторах на основе литий-кобальтового оксида надо ограничивать ток заряда. Иначе они могут взорваться. И то, что в случае с сотовым телефоном окажется просто досадной неприятностью, в случае с ноутбуком уже может угрожать безопасности человека.

— Пытались кобальт заменить на никель, добавляли марганец, пробовали различные комбинации, — рассказывает Николай Ляхов. – Находили соединения, не уступающие по емкости литий-кобальтовым и при этом более безопасные. Но с каждым новым компонентом сложность получения, а значит и стоимость материала возрастали. Новые продукты просто не выдерживали конкуренции на рынке. В конце концов, исследователи впали в уныние и пришли к выводу, что эту проблему решить нельзя, что от литиевых источников придется отказаться. И вот тут… Вот тут у ученых появился новый оксид – литий-железо фосфат.

Энергия тонкого помола

Собственно говоря, соединять литий с железом уже пробовали. Но у получившегося вещества оказалась столь низкая электронная проводимость, что никому и в голову не пришло использовать его в аккумуляторах. Как выразился Николай Ляхов, «синтезировали, померили – и отодвинули».

Дело в том, что, какими бы замечательными свойствами ни обладал ионный накопитель, в цепи мы все равно можем использовать только электронный ток. Поэтому нам и нужен второй металл – как источник электронов. Железо не подошло – проводимость материала подкачала, и о нем благополучно «забыли».

До тех пор, пока ученые не догадались это соединение… помолоть. И выяснились удивительные вещи: если мы уменьшаем размер частиц и, соответственно, увеличиваем поверхность, то этот материал – литий-железо фосфат, который в одном «куске» имел очень низкую электропроводность, — в порошке становится отличнейшим проводником.

— Тут уже любой школьник поймет, — говорит директор ИХТТМХ, — чем больше поверхность катода, тем больше получается ток. Сегодня использование литий-железо фосфата позволяет достигать разрядной емкости 170 миллиампер в час на грамм катода. Для сравнения: соединение с кобальтом дает емкость на 30 процентов меньше.

Впечатляет? Еще бы! Но у батарей «с железом» есть еще одно весьма важное преимущество – они куда дольше могут держать рабочее напряжение.

— Литий-кобальтовые элементы разрядить до нуля практически не удается, — поясняет Николай Ляхов. – Они начинают снижать напряжение задолго до того, как кончится заряд, – и прибор уже не может дальше работать. При этом 30-40 процентов емкости, как правило, остаются неиспользованными. В идеале батарея должна отдавать всю свою емкость при постоянном напряжении. Таких идеальных устройств пока еще не придумано, но литий-железо фосфат уже отчасти приблизился к искомому совершенству.

Мельницы на грани фантастики

Однако все, о чем мы до сих пор говорили, — это пока что теория. Научные знания, идеи и открытия. Как воплотить их в жизнь, как приготовить катодную массу, чтобы при минимальных затратах получить максимально эффективный материал, в решении этой задачи как раз и преуспели сотрудники Института химии твердого тела – обойдя своих коллег из ведущих научных центров Востока и Запада.

— Именно здесь сегодня и идет соревнование, — говорит Николай Ляхов, – кто сделает более мелкий, более однородный и более активный порошок. Причем не просто порошок, а композит: чтобы материал получился более электропроводным, частицы литий-железо фосфата покрывают углеродом. Проще говоря – сажей.

Вот в этом и состоит ноу-хау сибирских ученых: им удалось создать уникальную технологию приготовления фосфатно-углеродной смеси – где каждая твердая нанокрупица покрыта равномерным слоем мягкого компонента.

Коллеги и конкуренты изобретали свои способы смешивания двух таких разных веществ: одни окунали оксид в углеродсодержащий раствор, другие пробовали пропитать порошок керосином, а потом нагреть. Все это оказались «тупиковые ветви развития». Наши ученые предложили совершено иной, куда более простой и действенный метод.

Конечно, у сибирских химиков был большой задел: сотрудники ИХТТМ уже имели опыт получения подобных механокомпозитов. Такой эффект «смешанного перемалывания» действует, когда приходится иметь дело с двумя субстанциями различной твердости.

— Эти вещества ведут себя по-разному, — продолжает Ляхов, — твердая превращается в микро- и нанокрупицы, мягкая растекается, распределяется по поверхности этих крупиц, увеличивая площадь их соприкосновения друг с другом. Получается своего рода «каша». Но для достижения такого эффекта нужны специальные условия, специальные устройства.

Специальные устройства – это мельницы-активаторы, разработанные в Институте химии твердого тела. Таких мельниц нет больше нигде в мире.

— Время от времени мы покупаем для сравнения импортные аналоги и всякий раз убеждаемся – наши лучше! Там, где на импортном оборудовании надо молоть часами, мы получаем результат за две-три, а то и за половину минуты.

Этот сюжет должен войти в историю – примером того, как открытия и научные идеи могут долгое время оставаться невостребованными и ненужными. До тех пор, пока не будет найдена технология, которая поможет претворить их в реальное производство и получить реальный продукт.

На эту уникальную, единственную в своем роде технологию сегодня с большим интересом заглядываются крупные зарубежные компании. Многие были бы не прочь купить и сибирское ноу-хау, и сибирское оборудование. Но продавать свою разработку наши ученые не торопятся, у них пока другие планы.

Литий, который изменит мир

Через четыре года с конвейера в Новосибирске сойдет первый тяговый литий-ионный аккумулятор, полностью изготовленный по сибирской технологии и из сибирских материалов. Буквально на днях госкорпорация РОСНАНО и китайская компания Thunder Sky подписали контракт. Проект, как теперь модно это называть, кластерный: предполагается, что сначала новое производство станет выпускать литий-ионные источники по старой китайской технологии, но постепенно – сперва катод, затем анод, а потом и электролит – будут заменяться отечественными разработками.

Заметьте – здесь собираются делать не просто батарейки, а мощные тяговые аккумуляторы для больших, 40-местных автобусов.

— Рынок – огромный, — говорит директор ИХТТМХ. – И в первую очередь, конечно, это сам Китай. Я был в технопарке в Чань-Чуне, там сейчас строится автобусный завод. Они выразили готовность покупать у нас 2,5 миллиона аккумуляторов в год! Такие объемы мы пока даже не закладываем. И второе: китайцы смотрят в будущее. Они не зря размещают свою линию в России. Они понимают, что наш рынок тоже очень перспективен, и заранее стараются приблизить производство к потребителю.

По оценкам специалистов, будущие российские аккумуляторы значительно мощнее нынешних китайских. Если к этому приплюсовать еще простоту процесса приготовления катодной массы, отсутствие выбросов и экологическую безопасность технологического процесса, то получается – новое производство будет самым эффективным в мире.

На какое-то время в области создания литий-ионных источников мы оказались впереди планеты всей. Надолго ли – неизвестно, поскольку тема эта на острие актуальности, и многотысячные научные коллективы в разных странах мира сейчас заняты ее разработкой. А значит, надо успеть воспользоваться той форой, которую дали нам технология сибирских ученых и чудо-мельницы, сделанные в Институте химии твердого тела.

— Сфера применения литий-ионных источников огромна, — говорит директор института Николай Ляхов. – Это не только аккумуляторы для автобусов. На электричество можно перевести велосипеды, самоходные тележки, газонокосилки, бытовые приборы и инструменты. Есть такая задача, как стабилизация частоты в городских сетях – по вечерам, когда люди приходят с работы и расход энергии резко повышается. Сегодня для этого используют очень сложные инженерные механические устройства. Их можно было бы легко заменить на литий-ионные батареи. Вспомогательные источники питания на железной дороге, электрокары в складских помещениях, наконец, компьютеры – возможности применения этих батарей неисчислимы. Взять тот же автомобильный транспорт, который скоро можно будет заряжать от розетки, как сотовые телефоны. Это целая отрасль, которая зарождается сегодня на наших глазах и в ближайшем будущем готова изменить мир.

Источник: Сибкрай.ru

Метки:: Thunder Sky, Институт химии твердого тела и механохимии СО РАН, ИХТТМХ, литиевые источники тока, литий-железо фосфат, литий-ионная аккумуляторная батарея, литий-кобальт, нанотехнологии, Николай Ляхов, производство аккумуляторов, РОСНАНО, Россия, тяговый аккумулятор

www.battery-industry.ru

Предлагаем технологии, оборудование и материалы для производства литиевых аккумуляторов

Предлагаем технологии, оборудование и материалы для производства литиевых аккумуляторов

10.06.10 | Рубрика: Металлы, Прочие материалы, Товары и услуги. Просмотры: 11 030

Загрузка...

Компания RULink предлагает комплексное сотрудничество в организации и материально-техническом обеспечении промышленного производства перспективных источников тока по литиевой технологии.

Последние несколько лет широкое распространение получили литиевые аккумуляторы (литий-ионные, литий-полимерные и др.), представляющие собой отдельные банки с литиевым электролитом и помещенными в него электродами, соединенные в сборки по несколько штук, последовательно или парралельно.

Современные литиевые аккумуляторы имеют ряд несомненных преимуществ:

  1. Наибольшая плотность энергии из всех разновидностей аккумуляторов – как объемная, так и весовая.
  2. Напряжение питания на элементе — 3,6 В, что в 3 раза выше, чем у NiMH и NiCd аккумуляторов и почти в 2 раза выше, чем для свинцово-кислотных аккумуляторов.
  3. Быстрый процесс заряда батарей — до 90% емкости за 30-40 минут.
  4. Высокий показатель ресурса — свыше 1 000 циклов разряда/заряда.
  5. Низкий показатель саморазряда — до 5% в месяц.
  6. Отсутствие эффекта «памяти» — литиевые аккумуляторы можно ставить на зарядку при любой степени разряда, в отличии от NiCd и NiMg батарей, которые необходимо каждый раз полностью разряжать, иначе их емкость уменьшается.
  7. Дружественность окружающей среде — могут утилизироваться без предварительной переработки.

Все современные телефоны, смартфоны и КПК снабжены литиевыми аккумуляторами. В ближайшие годы во многих отраслях  промышленности ожидается полный переход на эти мощные источники тока.

Совместное применение литиевых аккумуляторов и бесколлекторных двигателей, конкурирует даже с двигателями внутреннего сгорания. Литий-ионные аккумуляторы являются самыми перспективными для использования в качестве тяговых батарей для электротранспорта. Технология производства литий-ионных аккумуляторов постоянно совершенствуется, совершенствуются характеристики, уменьшается стоимость производства аккумуляторов. Так что, возможно, литий-ионные аккумуляторы могут стать основным источником питания электромобилей в самом ближайшем будущем.

Если вы заинтересованы в организации нового производства литиевых батарей,  нуждаетесь в поставках качественных материалов или обновлении и расширении существующего производства, компания RULink может стать для вас надежным партнером.

В частности, мы можем организовать регулярные поставки литий-фосфат железа, литий-диоксид марганца, литий-оксид кобальта, литий-титанат, графитовые материалы (MCMB), медную и алюминиевую фольгу, сепаратор и другие материалы для новых мощных литий-ионных батарей.

Возможны поставки материалов для производства термических батарей: литий-кремниевый сплав, литий-алюминиевый сплав, порошок циркония, FeS2, CoS2, Li2O, электролит и т.д., а также импортные материалы и комплектующие для серебряно-цинковых, цинково-воздушных и свинцово-кислотных батарей.

Свяжитесь с нами любым удобным для Вас способом.

Мы будем рады ответить на все Ваши вопросы!

RULink Ltd. — ООО «Рулинк»

664007 Российская Федерацияг. Иркутск, ул. Декабрьских Событий 92, а/я 346

Тел./факс: +7 (3952) 566-316e-mail: [email protected]: www.rulink-net.com

ЗВОНОК ПО SKYPE: Мой статус

Метки:: CoS2, FeS2, Li2O, MCMB, RULink Ltd., алюминиевая фольга, графитовые материалы, литиевые источники тока, литий-алюминиевый сплав, литий-диоксид марганца, литий-железо-фосфатный аккумулятор, литий-ионная аккумуляторная батарея, литий-кремниевый сплав, литий-оксид кобальта, Литий-полимерный аккумулятор, литий-титанат, литий-фосфат железа, материалы и комплектующие изделия для производства автономных источников тока, медная фольга, оборудование, ООО "Рулинк", порошок циркония, производство аккумуляторов, Рулинк, сепаратор, термические батареи, электролит

www.battery-industry.ru

Технологии производства аккумуляторов - свинцово-кислотные АКБ, AGM или гелевые Gel.

Все автомобильные аккумуляторы являются основным автономным источником электрического тока, вырабатывают электроэнергию благодаря происходящим внутри корпуса химическим реакциям, способны заряжаться и накапливать электричество для запуска двигателя и питания электрических устройств при работающем или неработающем двигателе автомобиля.

Однако в современной автоиндустрии существует несколько технологий работы аккумуляторных батарей, зарядки и выработки электричества, которые необходимо учитывать при выборе АКБ для собственного авто.

Типовые свинцово-кислотные аккумуляторы

«Классические» свинцово-кислотные аккумуляторы (технология WET) появились еще в конце XIX-го века и представляли собой пакеты свинцовых решетчатых пластин с пастой двуокиси свинца, установленные в прочном корпусе, куда заливался электролит на основе воды и серной кислоты. При подключении нагрузки на АКБ, пластины и электролит замыкают цепь, а возникающая химическая реакция (губчатый свинец и окись преобразуются в сульфат свинца, а плотность электролита падает) вызывает направленный электрический ток, и батарея начинает разряжаться. При зарядке аккумулятора, электролит увеличивает плотность, а масса свинцовых пластин растет. Такие 12-вольтовые аккумуляторы используются и сегодня. Они недороги, практичны, устойчивы к средним перезарядам, эксплуатируются до 5-ти лет, могут быть обслуживаемыми и необслуживаемыми. Однако, владельцам такой АКБ обычно необходимо постоянно следить за уровнем и плотностью электролита, а конструкция не очень надежна (замыкания осыпающихся пластин, перезаряд чреват взрывом, клеммы окисляются при выкипании электролита и т.п.). Кроме того, испарение электролита опасно для человека. В 70-х годах ХХ-го века были созданы необслуживаемые аккумуляторы (токовыводы на основе свинцово-кальциевого сплава + олово), не требующие частого долива воды и имеющие вдвое больший срок эксплуатации. В начале 80-х годов появились также гибридные АКБ с токовыводами из сплава сурьмы, кадмия, свинца и кальция, а в начале XXI столетия появились батареи с токовыводами из многокомпонентных сплавов с добавками серебра. Главное их преимущество: очень медленный разряд и минимальный расход воды, что сделало аккумуляторных полностью необслуживаемыми.

Современные технологии АКБ

Современный мировой рынок аккумуляторных автомобильных батарей предлагает несколько видов АКБ с разными технологиями работы:

  • SLA (VRSA) – герметизированные обслуживаемые и необслуживаемые батареи со свинцово-кислотным наполнением и регулируемым клапаном давления (возникает при перезарядке). Комплектуются сурьмянистыми и кальциевыми токовыводами.
  • Аккумуляторы по технологии EFB - разновидность кислотно-свинцовых батарей, в которых на положительный токовывод нанесен тонкий слой гигроскопичного синтетического волокна, защищающий катод от осыпания.
  • Аккумуляторы по технологии AGM – разновидности свинцово-кислотные АКБ, в которых пластины из чистого свинца располагаются очень плотно и перемежаются сепараторами из микроскопического поглощающего стекловолокна, залитыми электролитом.
  • Гелевые аккумуляторы – свинцово-кислотные необслуживаемые АКБ, в которых электролит имеет желеобразное состояние, так как в электролит добавлена двуокись кремния.
Устройство свинцово-кислотных автомобильных аккумуляторовТехнология EFB для АКБ Благодаря тому, что пластины всегда находятся во влажном состоянии, аккумулятор: - быстро заряжается; - имеет повышенную плотность активной массы; - поддерживает низкое сопротивление; - создает высокий пусковой ток.

Такая АКБ служит долго, надежно и выдерживает большое количество перезарядок. Технология считается «промежуточной» между классическими WET-аккумуляторами и новейшими AGM-батареями.

Устройство автомобильных аккумуляторов AGMТехнология AGM  Absorptive Glass Mat (AGM) - самая современная технология аккумуляторных автомобильных свинцово-кислотных батарей необслуживаемого типа. Благодаря особому составу волокна, электролит не растекается и не испаряется, формируя плотную адсорбированную массу.

Преимущества такой технологии: - высокий пусковой ток (до 1000 А) при невысоком сопротивлении; - инертность пластин к сильным вибрациям; - отсутствие газовыделения и испарения электролита; - устойчивость к глубокой разрядке; - устойчивость к морозам; -быстрая зарядка.

АКБ на основе AGM универсален и может монтироваться на корпусе авто в любом положении (в том числе, горизонтальном), практически не требуют обслуживания. При нарушении целостности корпуса аккумулятора, электролит не вытекает и не создает пожароопасных ситуаций, что делает батарею на 100% безопасной для здоровья. Срок службы такой аккумуляторной батареи – не менее 8-10-ми лет (190-850 циклов зарядки) Технология AGM считается намного более продвинутой, чем классическая технология WET и существенно лучше, чем EFB. Однако, при эксплуатации AGM-аккумулятора, следует помнить, что он не любит слишком высокого напряжения при зарядке (не более 15 V), сверхнизких температур (электролит замерзает при -50С) и требует постоянного контроля заряда с помощью реле-регулятора.

prodazha-akb.ru

О промышленном производстве индустриальных и стартерных аккумуляторов TAB

Аккумуляторы TAB поставляются в Россию из Словении и Македонии, где находятся крупнейшие на Балканах аккумуляторные заводы, входящие в известную промышленную группу TAB -Tovarna akumulatorskih baterij d.d. (сокращенно –TAB). Изначально ТАВ была основана в 1965 году как дочерняя компания старейшего холдинга Rudnik Mežica Holding, который в течение более чем 350 лет осуществлял различные виды деятельности по промышленной добыче и переработке свинца.

В течение первых 15 лет компания ТАВ была лицензированным партнером компании TUDOR, Швеция. В последующем фирма начала производить аккумуляторы и под собственными брендами, одним из которых является одноименная марка TAB. В наши дни компания производит широкий спектр свинцово-кислотных источников питания, в том числе VRLA-батарей (с клапанным регулированием), EFB-аккумуляторов (батарей улучшенной заливки), VRLA-гелевых батарей, а также AGM-батарей (с абсорбированным в стекловолоконных матах электролитом).

В настоящее время ТАВ имеет уже несколько собственных производственных площадок, на чем стоит остановиться подробнее.

  • ПРОИЗВОДСТВО ПРОМЫШЛЕННЫХ БАТАРЕЙ (Словения, г. Межица). Это фабрика по выпуску индустриальных источников питания марки ТАВ, с годовой производительностью до 1,5 млн. штук среднеразмерных тяговых и стационарных батарей.
  • ПРОИЗВОДСТВО СТАРТЕРНЫХ БАТАРЕЙ (Словения, г. Межица). Это завод по производству стартерных батарей, продаваемых под собственными марками Тopla, ТАВ и Vesna, а также аккумуляторов для первичной комплектации. Годовая производительность предприятия - до 3 млн. шт. (в зависимости от типа батареи).
  • ПРОИЗВОДСТВО СТАРТЕРНЫХ БАТАРЕЙ (Македония, г. Пробиштип). Здесь расположен завод по производству стартерных батарей, продаваемых под собственными марками ТАВ и Vesna, годовая производительность до 1,5 млн. шт. (в зависимости от типа батареи).
  • ЗАВОД ПО ПЕРЕРАБОТКЕ (Словения, Кошица) Здесь предприятие производит около 35 тыс. тонн марочного свинца в год, используя для этого до 60 тыс. тонн лома из отслуживших аккумуляторных батарей. Они поступают сюда не только из Словении, но и из Италии, Германии, Хорватии, Сербии и Венгрии, Австрии, Македонии и других стран.
  • ЗАВОД ПО ПЕРЕРАБОТКЕ (Македония, г. Пробиштип)Предприятие производит около 5 тыс. тонн марочного свинца в год, используя для этого до 10 тыс. тонн лома из отслуживших аккумуляторных батарей.

Важно отметить, что за последние годы все перечисленные предприятия подверглись масштабной модернизации. На них максимально роботизировали сборочные линии, внедрили самые передовые технологические процессы, улучшили логистику. Благодаря этому удалось не только существенно сократить производственные издержки, но и еще больше повысить качество выпускаемых аккумуляторов, их надежность, а также ценовую привлекательность.

Высокое качество продукции ТАВ уже давно признано многими международными   промышленными корпорациями и автомобильными компаниями. Сегодня среди партнеров ТАВ можно увидеть такие именитые бренды, как Airbus, Caterpillar, Toyota, BMW AG, Daimler, Liebherr, ZF, Volvo, Fiorentini, Daewoo, Massey Ferguson, Ingresoll Rand и другие. Для некоторых из них компания осуществляет поставки стартерных батарей на первичную комплектацию, и уже сам этот факт красноречиво свидетельствует о высоком качестве и надежности аккумуляторов ТАВ.

Аккумуляторная марка ТАВ хорошо известна и в нашей стране. Достаточно сказать, что на сегодняшний день компания ТАВ является одним из лидеров среди зарубежных производителей, поставляющих свои батареи на российский рынок. И особая заслуга в этом, безусловно, принадлежит автомобильным стартерным аккумуляторам одноименного бренда ТАВ, которые сегодня успешно продаются и эксплуатируются во многих регионах России, включая регионы Урала, Алтайского края, Западной и Восточной Сибири. Чтобы убедиться в этом, достаточно посмотреть список наших региональных российских партнеров.

Для наглядного представления технических возможностей, которыми обладают производственные площадки ТАВ, предлагаем посмотреть короткий видеоролик, подготовленный маркетинговой службой компании.

tabrussia.ru


Смотрите также