Справочник химика 21. Биологические аккумуляторы


Как устроена энергетическая станция человека? Где же у человека батарейка?: archi_fact

Часть 1. Митохондрии эукариот.

В библии записано, что человека (Homo sapiens) создали Боги по своему образу и подобию. Хотя во многом ограничили, но творческого начала не лишили. Уже сейчас человек создает роботов для облегчения своего труда, различные машины и устройства, которые не вечны так же, как и он сам. Источником энергии этих машин является зарядное устройство, аккумулятор, батарейка, их устройство нам сейчас хорошо знакомо. А знаем ли мы, как устроено наше зарядное устройство, энергетическая станция человека?

Итак, митохондрии эукариотических клеток и их роль в организме человека. Начать следует с того, что митохондрии являются энергетической станцией клетки и всего организма человека в целом. Нас интересуют клетки эукариоты, ядерные, те клетки, которые содержат ядро. Одноклеточные живые организмы, не обладающие клеточным ядром это прокариоты, доядерные. Потомками прокариотических клеток являются органеллы, постоянные компоненты клетки, жизненно необходимые для её существования, располагаются в её внутренней части — цитоплазме. К прокариотам относятся бактерии и археи. Согласно наиболее распространённым гипотезам, эукариоты появились 1,5—2 млрд лет назад. Митохондрия - это двумембранная гранулярная или нитевидная органелла толщиной около 0,5 мкм. Характерна для большинства эукариотических клеток (фототсинтезирующие растения, грибы, животные). Важную роль в эволюции эукариот сыграл симбиогенез. Митохондрии — это потомки аэробных бактерий (прокариот), поселившихся некогда в предковой эукариотической клетке и «научившихся» жить в ней в качестве симбионтов. Теперь митохондрии есть почти во всех эукариотических клетках, размножаться вне клетки они уже не способны. Фото

Впервые митохондрии обнаружены в виде гранул в мышечных клетках в 1850 году. Число митохондрий в клетке непостоянно. Их особенно много в клетках, в которых потребность в кислороде велика. По своему строению они представляют собой цилиндрические органеллы, встречающиеся в эукариотической клетке в количестве от нескольких сот до 1—2 тысяч и занимающие 10—20 % её внутреннего объёма. Сильно варьируют размеры (от 1 до 70 мкм) и форма митохондрий. При этом ширина этих органелл относительно постоянна (0,5—1 мкм). Способны изменять форму. В зависимости от того, в каких участках клетки в каждый конкретный момент происходит повышенное потребление энергии, митохондрии способны перемещаться по цитоплазме в зоны наибольшего энергопотребления, используя для движения структуры цитоскелета эукариотической клетки.Макромолекула ДНК (Дезоксиробонуклеиновая кислота), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов находится в ядре клетки, в составе хромосом. В отличие от ядерной ДНК митохондрии имеют свою ДНК.  Гены, закодированные в митохондриальной ДНК, относятся к группе плазмагенов, расположенных вне ядра (вне хромосомы). Совокупность этих факторов наследственности, сосредоточенных в цитоплазме клетки, составляет плазмон данного вида организмов (в отличие от генома). Находящаяся в матриксе митохондриальная ДНК представляет собой замкнутую кольцевую двуспиральную молекулу, в клетках человека имеющую размер 16569 нуклеотидных пар, что приблизительно в 105 раз меньше ДНК, локализованной в ядре.Митохондриальная ДНК реплицируется в интерфазе, что частично синхронизировано с репликацией ДНК в ядре. Во время же клеточного цикла митохондрии делятся надвое путём перетяжки, образование которой начинается с кольцевой бороздки на внутренней митохондриальной мембране. Имея собственный генетический аппарат, митохондрия обладает и собственной белоксинтезирующей системой, особенностью которой в клетках животных и грибов являются очень маленькие рибосомы.Фото

Функции митохондрий и энергообразование.Основной функцией митохондрий является синтез АТФ (аденозин трифосфат)   — универсальной формы химической энергии в любой живой клетке.Главная роль АТФ в организме связана с обеспечением энергией многочисленных биохимических реакций. АТФ служит непосредственным источником энергии для множества энергозатратных биохимических и физиологических процессов. Всё это реакции синтеза сложных веществ в организме: осуществление активного переноса молекул через биологические мембраны, в том числе и для создания трансмембранного электрического потенциала; осуществления мышечного сокращения. Также известна роль АТФ в качестве медиатора в синапсах и сигнального вещества в других межклеточных взаимодействиях (пуринергическая передача сигнала между клетками в самых разных тканях и органах, а её нарушения нередко ассоциированы с различными заболеваниями).

АТФ является универсальным аккумулятором энергии в живой природе.Молекула АТФ (аденозин трифосфат) является универсальным источником энергии, обеспечивая не только работу мышц, но и протекание многих других биологических процессов, включая и рост мышечной массы (анаболизм). Молекула АТФ состоит из аденина, рибозы и трех фосфатов. Процесс синтеза АТФ, это отдельная тема, опишу в следующей части. Важно понять следующее. Энергия высвобождается при отделении от молекулы одного из трех фосфатов и превращением АТФ в АДФ (аденозин дифосфат). При необходимости может отделяться еще один фосфорный остаток с получением АМФ (аденозин монофосфат) с повторным выбросом энергии.

Наиболее важным качеством является то, что АДФ может быстро восстанавливаться до полностью заряженной АТФ. Жизнь молекулы АТФ составляет в среднем менее одной минуты, а за сутки с этой молекулой может происходить до 3000 циклов перезарядок.

Разберемся, что происходит в митохондриях, ибо академическая наука не совсем понятно объясняет процесс проявления энергии.В митохондриях создается разность потенциалов – напряжение. В Википедии записано, что основная функция митохондрии — окисление органических соединений и использование освобождающейся при их распаде энергии в синтезе молекул АТФ, который происходит за счёт движения электрона по электронно-транспортной цепи белков внутренней мембраны… Однако, сам электрон движется за счет разности потенциалов, а откуда она берется? Далее написано: Внутренняя мембрана митохондрий образует многочисленные глубокие складки, называемые кристами. Превращение энергии, освобождающейся при перемещении электронов по дыхательной цепи, возможно только в том случае, если внутренняя мембрана митохондрий непроницаема для ионов. Это обусловлено тем, что энергия запасается в виде разницы концентраций (градиента) протонов…  Перемещение протонов из матрикса в межмембранное пространство митохондрий, которое осуществляется благодаря функционированию дыхательной цепи, приводит к тому, что матрикс митохондрий защелачивается, а межмембранное пространство закисляется. Ученые везде видят только электроны и протоны. Важно здесь понять, что протон – это положительный заряд, а электрон – отрицательный. В митохондриях за разность потенциалов отвечает положительный водород и две мембраны. Положительно заряжается межмембранное пространство и в результате оно закисляется, а матрикс защелачивается отрицательными зарядами. Четкая разность потенциалов. Создается напряжение. Но ясности больше не стало, как возникло оно?!Если к данному процессу подойти, используя концепцию Трех Сил, которые четко прослеживаются в законе Ома, нам станет ясно, что для создания разности потенциалов необходим пусковой ток: U = I x R ( I = U / R). Применительно к процессу синтеза АТФ  мы наблюдаем сопротивление внутренней мембраны митахондрии и разность потенциалов в матриксе и межмембранном пространстве. А где же пусковой ток, та утверждающая, кардинальная сила, которая дает энергопотенциал и приводит в движение тот пресловутый электрон? Где источник?В пору вспомнить о боге, да не всуе. А кто вдохнул жизнь во все живое? Ведь человек не гальваническая батарейка и процессы в нем идут не сугубо электрические. Процессы в человеке антиэнтропийные – развитие, рост, процветание, а не деградация, распад и умирание.Продолжение следует.

archi-fact.livejournal.com

Аккумуляторы энергии в организме - Справочник химика 21

    Молекулы жи(юв богаты энергией. 1 г жира дает 9 ккал энергии, т. е. примерно в 2 р 13а больше, чем 1 г углеводов или белков. Поэтому неудивительно, что именно жир был выбран природой в качестве аккумулятора энергии в живых организмах. Также понятно, почему трудно сжечь избыток жира. При сп рании в организме 1 г жира выделяется в два раза больше энергии, чем при сгорании 1 г углеводов. [c.251]

    Аденозинтрифосфорная кислота (АТФ) является универсальным аккумулятором энергии, освобождающейся в процессе дыхания, и источником энергии для осуществления всех основных жизненных функций организма. [c.8]

    При распаде углеводов освобождается потенциальная химическая энергия, заключенная в питательных веществах. Эту энергию организм з той или иной степени может использовать. Аккумуляторами и переносчиками энергии являются макроэргические соединения. Энергия высвобождается при гидролитическом расщеплении макроэргических связей. Без фосфорилирования глюкоза не может подвергаться превращению в процессе дыхания, поэтому, для того чтобы придать ей такую способность, должно произойти фосфорилирование глюкозы. Для фосфорилирования необходимо затратить химическую работу, что осуществляется при переносе макроэргических фосфатных связей АТФ. Одна из молекул АТФ передает свой фосфатный радикал непосредственно глюкозе, а другая — фруктозо-6-фос-фату. Только после этого шестиуглеродная молекула углевода может быть расщеплена с образованием двух триоз. В последующих реакциях затраченные макроэргические связи образуются вновь. Первые две связи возникают в результате окисления фосфоглицеринового альдегида (реакция 7), а еще две связи — [c.160]

    Дело в том, что запасы АТФ в организме вовсе не так велики, чтобы ими можно было, например, поддерживать темп физических упражнений в течение сколько-нибудь длительного времени. Настоящим аккумулятором энергии в организме являются запасы жира и гликогена (гликоген накапливается главным образом в печени). Но для быстрого и регулируемого расхода этого топливного резерва необходимо участие АТФ. АТФ отдает энергию, распадается на АДФ и Ф, снова синтезируется за счет энергии [c.76]

    Человеческий организм, как, впрочем, и любая отдельная клетка, использует такие углеродсодержащие питательные и резервные вещества, как жиры и углеводы, в качестве аккумуляторов энергии , и значительная часть процессов обмена веществ направлена на то, чтобы сделать эту аккумулированную энергию доступной для использования. В живой клетке при этом, конечно, не происходит горения, сопровождающегося выделением света и тепла (пламя), это привело бы к ее полному разрушению. Энергия извлекается небольшими порциями — крупные купюры (молекулы крахмала или жира) размениваются на мелкую монету, но и эти мелкие деньги еще содержат энергию в форме химической энергии (подробнее см. об этом на стр. 223). [c.76]

    Реакции гидролиза, т. е. расщепления органических высокомолекулярных соединений действием воды, имеют большое биологическое и техническое значение. Путем гидролиза происходит распад белковых веществ, крахмала, гликогена, клетчатки, жиров, восков, глюкозидов и тому подобных веществ, причем образуются более простые низкомолекулярные соединения. Реакции гидролиза противоположны по направлению реакциям межмолекулярной дегидратации. В животных и растительных организмах между этими процессами существует биологическое равновесие. В организмах путем дегидратаций происходит образование полисахаридов, белков, жиров и других сложных соединений. Эти эндотермические по своему характеру процессы осуществляются при участии солнечной энергии, которая таким образом вовлекается в биосферу земли. Поэтому сложные химические вещества растений являются как бы аккумуляторами солнечного тепла. [c.534]

    Эта кислота является настоящим аккумулятором химической энергии она образуется в результате процессов окисления пищевых веществ в клетках организма и расходуется, когда организм должен быстро произвести какую-либо работу. Исключительные свойства богатых энергией фосфатов Б. и А. Пюльман и Грабе связывают, во-первых, с наличием в их молекулах цепочки атомов, каждый из которых обладает суммарным положительным зарядом, что означает недостаток я-электронов, во-вторых, с существованием электронного облака , окружающего эту цепочку. Молекула получается как бы слоистой. Большой запас энергии в ней сочетается с очень большой устойчивостью по отношению к гидролизу (в отсутствие гидролитических ферментов). Предполагается, что эти качества и способствовали тому, что фосфаты приобрели осо- [c.183]

    Окислительно-восстановительные реакции самые распространенные и играют большую роль в природе и технике. Они являются основой жизни на Земле, так как с ними связаны дыхание и обмен веществ в живых организмах, гниение и брожение, фотосинтез в зеленых частях растений и нервная деятельность человека и животных. Их можно наблюдать при сгорании топлива, в процессах коррозии металлов и при электролизе. Они лежат в основе металлургических процессов и круговорота элементов в природе. С их помощью получают аммиак, щелочи, азотную, соляную и серную кислоты и многие другие ценные продукты. Благодаря окислительно-восстановительным реакциям происходит превращение химической энергии в электрическую в гальванических элементах и аккумуляторах. Они широко используются в мероприятиях по охране природы. [c.226]

    Среда обитания, аккумулятор и источник вещества и энергии для организмов суши [c.42]

    Движение клеток и организмов, выполнение ими механической работы например, мышечной) производятся особыми сократительными белками, служащими рабочими веществами этих процессов. Сократительные белки выполняют ферментативную, АТФ-азную функцию, реализуют превращение химической энергии (запасенной в АТФ, с. 40) в механическую работу. Зарядка аккумулятора , т. е. окислительное фосфорилирование, происходит в мембранах митохондрий при непременном участии ферментов дыхательной цепи. Окислительно-восстановительные ферментативные процессы происходят и при фотосинтезе. Другие мембранные белки ответственны за активный транспорт молекул и ионов сквозь мембраны и, тем самым, за генерацию и распространение нервного импульса. Белки определяют все метаболические и биоэнергетические процессы. [c.87]

    АТФ играет важную роль в процессах обмена веществ в живых организмах. Она является своеобразным аккумулятором энергни, поставщиком химической энергии в различных процессах биосинтеза и в таких физиологических процессах, как сокращение мышц. [c.715]

    В ЖИВОМ организме липиды выполняют разнообразные функции. Им принадлежит важная роль в формировании и старении организма, в деятельности его защитных механизмов. Запасные липиды являются аккумулятором химической энергии и используются организмом при недостатке питания и заболеваниях. Подкожные жировые ткани предохраняют животных от охлаждения, а внутренние органы — от механических повреждений. [c.199]

    У животных жир сосредоточивается главным образом на внутренних органах и в подкожной клетчатке, особенно в брюшной полости. У морских животных и рыб много жира находится в печени. Обладая низкой теплопроводностью, жир в подкожном слое служит хорошим изолятором тепла, предохраняя животных от переохлаждения. Это свойство жира очень важно для морских животных, например для китов, моржей, тюленей и др. Благодаря значительной толщине подкожного слоя жира эти животные легко переносят пребывание в холодной воде морей и океанов. Одновременно жир (резервный) у животных играет роль аккумулятора химической энергии, которую организм использует при недостатке пищи. [c.5]

    В заключение необходимо отметить, что окислительно-восстановительные реакции имеют большое значение в жизни и технике. В организмах животных и растений протекают весьма сложные окислительно-восстановительные реакции, в ходе которых выделяется энергия, необходимая для жизнедеятельности. Такие реакции можно наблюдать при сгорании топлива, в процессах коррозии металлов, при электролизе. Они лежат в основе получения металлов из их руд. Их широко используют в промышленности при получении многих ценных продуктов. С помощью окислительно-восстановительных реакций получают аммиак, щелочи, азотную, соляную, серную кислоты и т. д. Благодаря окислительно-восстановительным реакциям происходит превращение химической энергии в электрическую в гальванических элементах и аккумуляторах. [c.103]

    Первый — кофермент переноса фосфатных групп у всех живых организмов. Это вещество — важнейший аккумулятор химической энергии, которая освобождается в процессах клеточного обмена в реакциях окислительного расщепления веществ. Второй — участвует в разнообразных превращениях такого типа как [c.66]

    Одновременно жир (резервный) у животных играет роль аккумулятора химической энергии, которую организм использует при недостатке пищи. [c.6]

    Любой организм должен обладать каким-то приспособлением для хранения энергии в аккумулированной форме. Ведь иначе мы могли бы жить, лишь непрерывно принимая пищу. Такие аккумуляторы должны быть до известной степени универсальными — их энергия должна легко превращаться в разнообразные формы. Необходимость иметь молекулы — аккумуляторы составляет третье по счету требование. [c.21]

    Полисахариды входят в состав почти всех живых организмов и являются одним нз наиболее крупных классов природных соединений. Они играют роль источников энергии или структурных элементов в живых организмах. В качестве примера структурной роли полисахаридов можно привести целлюлозу (полимер D-глюкозы), являющуюся самым распространенным органическим веществом в природе и опорным материалом у растений, а также хитин (полимер 2-ацетамндо-2-дезокси-0-глюкозы)—основной компонент наружного скелета членистоногих. В качестве одного из основных источников энергии для живых организмов отдельные полисахариды участвуют в главном направлении энергообмена в большинстве клеток. Крахмалы н гликогены (полимеры D-глюкозы) являются аккумуляторами энергии в растениях и животных, соответственно. Полисахариды выполняют и более специфические функции например, они ответственны за групповую специфичность пневмококков. Другие природные макромолекулы, состоящие не только из углеводных остатков и содержащие в своем составе блоки из моносахаридных звеньев, необходимы для нормального развития и функционирования тканей животных. Групповые вещества крови, например, относятся к гликопротеинам, у которых расположение моносахаридных остатков в углеводных субъединицах ответственно за способность всей молекулы определять групповую принадлежность крови. [c.208]

    Фосфор — элемент, входящий в состав белков, фосфолипидов нуклеиновых кислот. Кроме пластической роли, и это очень важно, соединения фосфора принимают участие в обмене энергии (аденозинтрифосфорная кислота и креатинфосфат являются аккумуляторами энергии, с их превращениями связаны мышечная и умственная деятельность, жизнеобеспеченность организма). [c.67]

    Образование многочисленных фосфорных эфиров в процессе окисления различных веществ в животном организме играет важную биологическую роль. Дело в том, что при расщеплении связей фосфорной кислоты с углеродом в условиях животного организма освобождается большое количество энергии (12000 кал на 1 моль фосфорной кислоты), в силу чего эта связь называется макроэргической. Эфиры фосфорной кислоты, несущие в себе большой запас энергии, являются в животном организме своеобразными аккумуляторами энергии. Энергия, осво бождающаяся в процессе окисления различных органических веществ, не расходуется сразу, а откладывается, если так можно выразить, в запас в виде сложных эфиров фосфорной кислоты. Запасенная энергия расходуется по мере надобности, освобождаясь в результате расщепления эфиров фосфорной кислоты. [c.293]

    Сходство путей метаболизма в различных видах — один из основных принципов биохимии. Классические исследования, посвященные спиртовой ферментации дрожжей и образованию молочной кислоты в тканях млекопитающих, показали, что эти два процесса по существу протекают одинаково и отличаются лишь конечными стадиями, когда в дрожжах происходит анаэробное декарбоксилирование пирувата, а в мышечной ткани — нет. И в том, и в другом процессе НАД восстанавливается, а энергия накапливается в виде АТФ. Последние исследования других биологических механизмов образования, накопления и передачи энергии выявили некоторые интересные различия между видами, например наличие нескольких путей диссимиляции сахаров в бактериях, но все же наблюдается удивительное сходство этих механизмов. Многие промежуточные соединения одинаковы для всех видов. В живых клетках в качестве аккумулятора энергии всегда используется АТФ. Никотииамиднуклео-тиды участвуют во многих реакциях с переносом электрона триозофосфаты всегда участвуют в гликолизе. Белки, являющиеся основой живых организмов, во всех исследованных видах состоят приблизительно из 20 аминокислот. Эти аминокислоты, по-видимому,. в целом ряде организмов синтезируются одинаково, хотя точно установлено наличие двух путей в случае лизина. При этом высшие растения и бактерии используют различные пути, а грибы — оба. Это интересно при прослеживании эволюционных линий по био- [c.234]

    ГЛИЦИН (гликокол). Аминокислота. НгНСНгСООН. Легко синтезируется организмом большинства животных. Участвует в образовании креатина, являющегося аккумулятором энергии мышечного сокращения. Ряд ядовитых веществ в организме обезвреживается благодаря присутствию Г. Входит в состав глутатиона, принимающего активное участие в окислительно-восстановительных процессах организма. Особенно много Г. в кормах животного происхождения, но молочные белки и альбумины содержат его мало. В животноводческой практике часто применяются в качестве разбавителей семени производителей при искусственном осеменении. ГЛОБУЛИНЫ. См. Белки. [c.74]

    Было показано, что молекулы мышечного белка акто-миозина способны изменять свою длину непосредственно за счет химической энергии, выделяющейся при отщеплении остатка фосфорной кислоты от молекулы АТФ, т. е. этот процесс обусловливает сократительную деятельность мышц. Таким образом, система АТФ — белок играет роль аккумулятора химической энергии в организме. Накопленная химическая энергия по мере надобности превращается при помощи белка актомио-зина непосредственно в механическую энергию, без промежуточного перехода в тепловую энергию. Для этого [c.449]

    Для реализации биосинтеза и метаболизма необходима энергия, запасаемая в клетках в химической форме, главным образом в экзергонических третьей и второй фосфатной связи АТФ. Соответственно метаболические биоэнергетические процессы имеют своим результатом зарядку аккумулятора — синтез АТФ из АДФ и неорганического фосфата. Это происходит в процессах дыхания и фотосинтеза. Современные организмы несут память об эволюции, начавшейся около 3,5 10 лет назад. Имеются веские основания считать, что жизнь на Земле возникла в отсутствие свободного кислорода (см. 17.2). Метаболические процессы, протекающие при участии кислорода (прежде всего окислительное фосфорилирование при дыхании), относительно немногочисленны и эволюционно являются более поздними, чем анаэробные процессы. В отсутствие кислорода невозможно полное сгорание (окисление) органических молекул пищевых веществ. Тем не менее, как это показывают свойства ныне существующих анаэробных клеток, и в них необходимая для жизни энергия получается в ходе окислительно-восстановительных процессов. В аэробных системах конечным акцептором (т. е. окислителем) водорода служит Ог, в анаэробных — другие вещества. Окисление без Oj реализуется в двух путях брожения — в гликолизе и в спиртовом брожении. Гликолиз состоит в многостадийном расщеплении гексоз (например, глюкозы) вплоть до двух молекул пирувата (пировиноградной кислоты), содержащих по три атома углерода. На этом, пути две молекулы НАД восстанавливаются до НАД.Н и две молекулы АДФ фосфоршгируются— получаются две молекулы АТФ. Вследствие обратной реакции [c.52]

    Получение и использование. Фосфор, так же как углерод и азот, исключительно важен для процесса жизнедеятельности на нашей планете. Любой организм на Земле содержит фосфор. Он входит в состав скелета, мозга и аденазинфосфатов — аккумуляторов и источников энергии у высших животных, фосфор — элемент активный, в природе его нельзя найти в свободном состоянии. Он встречается только в форме солей фосфорной кислоты. [c.262]

    Было показано, что молекулы мышечного белка актомиозина способны изменять свою длину непосредственно за счет химической энергии, выделяющейся при отщеплении остатка фосфорной кислоты от молекулы АТФ, т. е. этот процесс обусловливает сократительную деятельность мышц. Таким образом, система АТФ — белок играет роль аккумулятора химической энергии в организме. Накопленная химическая энергия по мере надобности превращается при помощи белка актомиозина непосредственно в механическую энергию, без промежуточного перехода в тепловую энергию. Для этого процесса характерен весьма высокий коэффициент полезного действия (приблизительно 50%), чем мышца существенно отличается от используемых в современной технике тепловых машин. В тепловых машинах механическая работа совершается за счет химической энер1 ии топлива через стадию перехода в тепло с соответственно более низким коэффициентом полезного действия (20— 30%). [c.376]

    Растения, поглощая из воздуха СОг, а из почвы НгО, с помощью энергии солнечных лучей и сложнейшего процесса фотосинтеза, происходящего в зеленом листе, превращают их в органические вещества, богатые энергией углеводы (сахар, крахмал, клет-чатка), жиры, белки, витамины, которые являются основой жизни людей и животных. В качестве побочного продукта этой сложнейшей химической фабрики растений выделяется в атмосферу свободный кислород. Выходит, что состав атмосферы нашей планеты зависит от растительного мира, от наличия же кислорода находится в прямой зависимости весь животный мир. Так устанавливается взаимосвязь между растениями, атмосферой и животными организмами. Продукты фотосинтеза используются растениями на их текущие потребности жизни (дыхание), основная же масса этих продуктов откладывается как запас в клубнях, плодах и т. д. Таким образом, растения являются своеобразным аккумулятором солнечной энергии. [c.148]

    В самом деле, энергия поступает в организм в форме пищевых веществ (белков, жиров, углеводов), носителей химической энергии высокого потенциала. Эти пищевые вещества, ассимилируясь, в результате обмена могут распадаться. Энергия распада используется организмом на синтез, механическую работу, на производство тепла. Следовательно, в конечном итоге, химическая энергия высокого потенциала после превращений покидает организм в виде теплоты или продуктов распада (мочевина и др.), обладающих низким химическим потенциалом (см. табл. на стр. 27, 28). Это не вызывает сомнений, и с этой точки зрения приложимость второго начала термо-дш1амики к органическому миру очевидна. Однако организмы—незамкнутые системы. Это системы открытые. Отсюда теоретически мыслимо, что, обесценивая общие запасы энергии в результате обмена, организмы сами заряжаются до более высокого потенциала и все более уходят от состояния равновесия, требуемого вторым началом термодинамики. На эту зарядку уходит непрерывно поступающая энергия пищи, подобно тол у как повышается потенциал аккумулятора при его зарядке (А. В. Нагорный). Зеленые растения при этом не являются исключением, ибо для повышения энергетического потенциала ими используется солнечная энергия. [c.33]

chem21.info

Растения аккумуляторы - Справочник химика 21

    Реакции гидролиза, т. е. расщепления органических высокомолекулярных соединений действием воды, имеют большое биологическое и техническое значение. Путем гидролиза происходит распад белковых веществ, крахмала, гликогена, клетчатки, жиров, восков, глюкозидов и тому подобных веществ, причем образуются более простые низкомолекулярные соединения. Реакции гидролиза противоположны по направлению реакциям межмолекулярной дегидратации. В животных и растительных организмах между этими процессами существует биологическое равновесие. В организмах путем дегидратаций происходит образование полисахаридов, белков, жиров и других сложных соединений. Эти эндотермические по своему характеру процессы осуществляются при участии солнечной энергии, которая таким образом вовлекается в биосферу земли. Поэтому сложные химические вещества растений являются как бы аккумуляторами солнечного тепла. [c.534]     Окислительно-восстановительные реакции самые распространенные и играют большую роль в природе и технике. Они являются основой жизни на Земле, так как с ними связаны дыхание и обмен веществ в живых организмах, гниение и брожение, фотосинтез в зеленых частях растений и нервная деятельность человека и животных. Их можно наблюдать при сгорании топлива, в процессах коррозии металлов и при электролизе. Они лежат в основе металлургических процессов и круговорота элементов в природе. С их помощью получают аммиак, щелочи, азотную, соляную и серную кислоты и многие другие ценные продукты. Благодаря окислительно-восстановительным реакциям происходит превращение химической энергии в электрическую в гальванических элементах и аккумуляторах. Они широко используются в мероприятиях по охране природы. [c.226]

    Окисление — восстановление — один из важнейших процессов природы. Дыхание, усвоение углекислого газа растениями с выделением кислорода, обмен веществ и ряд биологических процессов в основе своей являются окислительно-восстановительными реакциями. Сжигание топлива в топках паровых котлов и двигателях внутреннего сгорания, электролитическое осаждение металлов, процессы, происходящие в гальванических элементах и аккумуляторах, включают реакции окисления — восстановления. Получение простых веществ, например железа, хрома, марганца, никеля, кобальта, вольфрама, меди, серебра, цинка, серы, хлора, иода и т. д., и ценных химических продуктов, например аммиака, щелочей, сернистого газа, азотной, серной и других кислот, основано на окислительно-восстановительных реакциях. Производство строительных материалов, пластических масс, удобрений, медикаментов и т. д. было бы невозможно без использования окислительно-восстановительных процессов. На процессах окисления — восстановления в аналитической химии основаны методы объемного анализа пер-манганатометрия, иодометрия, броматометрия и др., играющие важную роль при контролировании производственных процессов и выполнении научных исследований. [c.51]

    Для образования ископаемых углей потребовалась масса углерода,, извлеченная лесными и другими растениями из углекислоты атмосферного воздуха за счет энергии солнечных лучей. Поэтому угольные пласты представляют собой своеобразные аккумуляторы солнечной энергии, использованной в процессе образования основного зеленого растительного вещ,ества — хлорофилла, как это доказано К. А. Тимирязевым [34]. [c.35]

    Далее, как явствует из схемы, аккумулятором (накопителем) фосфора в биосфере являются -растения, животные же лишь заимствуют фосфор от растений. [c.339]

    Главными растениями — аккумуляторами молибдена являются бобовые, содержащие от 4 - До п 10 % молибдена (на су- [c.220]

    Приоритетные зафязняющие элементы в районе воздействия Норильского комбината — медь и никель. Некоторые растения в этом регионе зафязнены также свинцом и кобальтом. Среди растений аккумуляторами тяжелых металлов являются хвощ, мхи, лишайники, багульник и пихта. [c.146]

    Химические реакции тесно связаны с такими физическими процессами, как электрические явления, теплопередача, поглощение или излучение электромагнитных колебаний. Например, химические реакции, протекающие в гальванических элементах и аккумуляторах, являются причиной возникновения электрического тока. Многие химические реакции сопровождаются выделением или поглощением энергии в виде теплоты, а возникновение других реакций обусловлено действием света. Так, поглощение солнечного света зелеными растениями вызывает сложные реакции фотосинтеза, в результате которых из двуокиси углерода и воды образуются различные органические соединения. Таким образом, физическая химия решает наиболее общие вопросы химии, опираясь на физические законы и методы исследования. [c.5]

    В заключение необходимо отметить, что окислительно-восстановительные реакции имеют большое значение в жизни и технике. В организмах животных и растений протекают весьма сложные окислительно-восстановительные реакции, в ходе которых выделяется энергия, необходимая для жизнедеятельности. Такие реакции можно наблюдать при сгорании топлива, в процессах коррозии металлов, при электролизе. Они лежат в основе получения металлов из их руд. Их широко используют в промышленности при получении многих ценных продуктов. С помощью окислительно-восстановительных реакций получают аммиак, щелочи, азотную, соляную, серную кислоты и т. д. Благодаря окислительно-восстановительным реакциям происходит превращение химической энергии в электрическую в гальванических элементах и аккумуляторах. [c.103]

    Никотинамидные коферменты принимают участие в отдельных реакциях углеводного, липидного и аминокислотного обмена в процессах фотосинтеза в растениях. Дегидрогеназы катализируют отдельные этапы реакций анаэробного расщепления моносахаридов с высвобождением свободной энергии и накоплением ее в аденозин-5 -трифосфате (АТФ), который является основным аккумулятором и затем генератором энергии в живой клетке. В этой метаболической реакции происходит образование макроэргической связи с превращением АДФ в АТФ, которые являются ключевыми энергетическими переносчиками. [c.318]

    Биоэнергетические процессы, приводящие к синтезу АТФ, к зарядке биологических аккумуляторов , протекают в мембранах митохондрий. В них локализованы и пространственно организованы молекулярные системы, ответственные за энергетику живых организмов. Синтез АТФ в митохондриях сопряжен с электронным и ионным транспортом и с механохимическими явлениями. Функции митохондриальных мембран весьма сложны и многообразны. Другой тип биоэнергетических сопрягающих мембран — мембраны хлоропластов растений, ответственные за фотосинтез,— рассматривается в гл. 14. У бактерий сопряжение реализуется в плазматических мембранах. [c.423]

    Применяют как добавку к активной массе отрицательного электрода в свинцовых аккумуляторах (кислотостойкие наполнители), для проклеивания и окрашивания технических сортов бумаги, для обработки древесины применяют также в качестве стимулятора роста растений. [c.443]

    Сходство путей метаболизма в различных видах — один из основных принципов биохимии. Классические исследования, посвященные спиртовой ферментации дрожжей и образованию молочной кислоты в тканях млекопитающих, показали, что эти два процесса по существу протекают одинаково и отличаются лишь конечными стадиями, когда в дрожжах происходит анаэробное декарбоксилирование пирувата, а в мышечной ткани — нет. И в том, и в другом процессе НАД восстанавливается, а энергия накапливается в виде АТФ. Последние исследования других биологических механизмов образования, накопления и передачи энергии выявили некоторые интересные различия между видами, например наличие нескольких путей диссимиляции сахаров в бактериях, но все же наблюдается удивительное сходство этих механизмов. Многие промежуточные соединения одинаковы для всех видов. В живых клетках в качестве аккумулятора энергии всегда используется АТФ. Никотииамиднуклео-тиды участвуют во многих реакциях с переносом электрона триозофосфаты всегда участвуют в гликолизе. Белки, являющиеся основой живых организмов, во всех исследованных видах состоят приблизительно из 20 аминокислот. Эти аминокислоты, по-видимому,. в целом ряде организмов синтезируются одинаково, хотя точно установлено наличие двух путей в случае лизина. При этом высшие растения и бактерии используют различные пути, а грибы — оба. Это интересно при прослеживании эволюционных линий по био- [c.234]

    В получаемых по различным вариантам стимуляторах роста растений отсутствуют в необходимом количестве макро- и микроэлементы питания -фосфор, азот, калий, медь, железо и др. Для обеспечения растешш необходимыми элементами пргтания широко используются органо-минеральные удобрения на основе органической массы торфов. Обычно торфяная крогпка (торф с размером частиц 3-20 мм) пропитывается водным раствором минеральных удобрений (азотных, фосфорных, калийных, микроэлементами) и сушится. Торфяная крошка выполняет роль аккумулятора комплексных минеральных удобрений и придает им сыпучесть. [c.28]

    Г к применяют как компоненты промывочных жидкостей при бурении нефтяных и газовых скважин, кнстото-стойкие наполнители при изготовлении аккумуляторов, для улучшения структуры почв, в кач-ве стимуляторов роста растений, компонентов органо-минер удобрений и антисептиков при леченин кожных бочезнен с-х животных [c.618]

    Пестициды, распыленные в воздухе при использовании самолетов, переносятся на огромные расстояния и с осадками выпадают не только на поверхность земли, но и на водную поверхность, нанося огромный вред всему живому. Кроме того, в ряде случаев биоциды вносятся непосредственно в водную среду для уничтожения обитающих там вредных насекомых, непромысловых видов рыб, некоторых водных растений. Даже тщательная дозировка и контроль при массовом применении пестицидов (например, при истреблении комаров) оказываются недостаточными гибнут птицы и мелкие животные, планктон и бентос. Поэтому Мировой океан можно считать аккумулятором особо стойких пестицидов. Так, для наиболее хорощо изученного из них — ДДТ (4,4 -дихлордифенилтрихлорметилметан) — установлено, что в гидросферу поступило более 25 % общего количества использованного препарата. Следовательно, использований долгоживущих пестицидов должно быть ограничено или запрещено. Например, применение ДДТ уже запрещено во всем мире, в СССР — с 1970 г. [c.43]

    Полисахариды входят в состав почти всех живых организмов и являются одним нз наиболее крупных классов природных соединений. Они играют роль источников энергии или структурных элементов в живых организмах. В качестве примера структурной роли полисахаридов можно привести целлюлозу (полимер D-глюкозы), являющуюся самым распространенным органическим веществом в природе и опорным материалом у растений, а также хитин (полимер 2-ацетамндо-2-дезокси-0-глюкозы)—основной компонент наружного скелета членистоногих. В качестве одного из основных источников энергии для живых организмов отдельные полисахариды участвуют в главном направлении энергообмена в большинстве клеток. Крахмалы н гликогены (полимеры D-глюкозы) являются аккумуляторами энергии в растениях и животных, соответственно. Полисахариды выполняют и более специфические функции например, они ответственны за групповую специфичность пневмококков. Другие природные макромолекулы, состоящие не только из углеводных остатков и содержащие в своем составе блоки из моносахаридных звеньев, необходимы для нормального развития и функционирования тканей животных. Групповые вещества крови, например, относятся к гликопротеинам, у которых расположение моносахаридных остатков в углеводных субъединицах ответственно за способность всей молекулы определять групповую принадлежность крови. [c.208]

    Функции углеводов в клетках весьма разнообразны. Оии служат источником и аккумулятором энергии клеток (крахмал, гликоген), выполняют скелетные функции в растениях и некоторых животных, например в крабах, кревеУках, служат основой клеточной стенки бактерий, входят в состав некоторых антибиотиков. Большинство животных белков имеют детерминанты углеводной природы, являясь гликопротеннами. Нельзя забывать и о том, что углеводы D-рибоза и D-дезоксирнбоэа — одни иэ главных компонентов нуклеиновых кислот. В последние годы большое внимание привлекают функции углеводов как рецепторов клеточной поверхности и антигенных детерминант природных биополимеров. [c.444]

    Сточные воды горнометаллургических комбинатов, производств красителей, кадмий-никелевых аккумуляторов, минеральных удобрений и др. даже после специальной очистки содержат значительные количества К. При их попадании на поля К. задерживается в почве. Вблизи металлургических предприятий из-за оседания К. из атмосферы содержание его на поверхности почвы в 20—50 раз выше, чем на контрольны,х участках в воздухе крупных промышленных городов концентрации К. достигают 15 нг/м (Yost). Значительные количества К. в зонах загрязнения почвы определяются на глубине до 2,5 см на глубине 10—15 см содержание К. обычное. В почву К. поступает также с минеральными удобрениями (суперфосфат содержит 720,2 мкг К. в 100 г, фосфат калия — 471 мкг, селитры— до 66 мкг). Загрязнение воздуха и поверхности почвы вызывает К., содержащийся в выхлопных газах автомашин и тракторов. На 25—30 м по обе стороны магистралей на поверхности листьев растений обнаруживается в 2—3 раза больше К., чем в контрольных районах (Бериня и др.). Загрязнение почвы К- [c.162]

    Через десять лет после того, как были открыты калий и натрий, был получен третий щелочной металл — литий. Шведский химик Ю. Арфедсон, ученик Берцелиуса, в 1817 г, обнаружил литий при растворении в серной кислоте минерала петалита. Через год Дэви удалось получить небольшое количество этого металла при электролизе его гидроксида. По предложению Берцелиуса в честь того, что новый металл получен из камня, его назвали литием (от греческого литое — камень), а его щелочь — гидроксид — литионом. Литий входит в состав около 150 минералов и некоторых растений (водорослей, лютика, татарника и др.). Он нашел применение в ядерной энергетике как теплоноситель, его можно использовать как источник трития. Тритий же — потенциальное горючее для термоядерных реакторов и... для смертоносных водородных бомб. Но литий главным образом мирный металл. Его широко применяют в производстве эмалей и глазурей, специальных опаловых -стекол. Его вводят в состав алюминиевых спдавов для повышения прочности, свинцовых — для увеличения твердости и т. д. Литий применяют для удаления азота, водорода и кислорода из расплавленных металлов. Литий используется в аккумуляторах, которые значительно легче обычных [c.199]

    Г. к. относятся к высокомолекулярным соединениям они легко образуют коллоидные р-ры, набухают и пептизируются в воде, щелочных р-рах, в нек-рых оргапич. веществах, напр, в диоксане и пиридине. Щелочные (0,025 и.) р-ры Г. R. при прохождении через катиониты освобождаются от катионов. Г. к. при взаимодействии с углекислыми солями вытесняют углекислоту, об]эазуя соответствующие соли Г. к. Гу.маты щелочных металлов растворимы в воде, П ,елочноземельных — нерастворимы. Растворы Г. к. обладают свойством обменивать ионы металлов. В практике. это свойство Г. к. используется для смягчения н естких вод. Воду пропускают через фильтры, запс1.лненные бурым уг.юм. Со.пи кальция я магния образуют соответствующие нерастворимые гуматы кальция и магния, к-рые задерживаются на угле. Аммониевые соли Г. к. растворимы в воде и используются в с. х-ве в виде органо-минеральных удобрений. Г. к. применяют как кислотостойкие наполнители (сосуды для аккумуляторов), для проклеивания и окрашивания технич, сортов бумаги, для обработки древесины, как вещества, способствующие росту растений, и др. [c.508]

    Растения, поглощая из воздуха СОг, а из почвы НгО, с помощью энергии солнечных лучей и сложнейшего процесса фотосинтеза, происходящего в зеленом листе, превращают их в органические вещества, богатые энергией углеводы (сахар, крахмал, клет-чатка), жиры, белки, витамины, которые являются основой жизни людей и животных. В качестве побочного продукта этой сложнейшей химической фабрики растений выделяется в атмосферу свободный кислород. Выходит, что состав атмосферы нашей планеты зависит от растительного мира, от наличия же кислорода находится в прямой зависимости весь животный мир. Так устанавливается взаимосвязь между растениями, атмосферой и животными организмами. Продукты фотосинтеза используются растениями на их текущие потребности жизни (дыхание), основная же масса этих продуктов откладывается как запас в клубнях, плодах и т. д. Таким образом, растения являются своеобразным аккумулятором солнечной энергии. [c.148]

    Стибин получают при взаимодействии сплавов сурьмы (с Zh или Mg) с разб. р-рами кислот. Он был получен также нри восстановлении ЗЬгОа водородом под высоким давлением. Применяют в качестве фумиганта для борьбы с насекомыми — вредителями с.-х. растений. Токсичность стибина несколько больше, чем арсина и фосфина. Указываются случаи отравления стибином при рафинировании металлов, содержащих, помимо сурьмы, алюминий, цинк. При зарядке аккумуляторов также может образовываться стибин. [c.565]

    В итоге сначала получается фосфоглицериновая кислота, затем фосфоглицериновый альдегид С3Н5О3—Ф кислород и АДФ, Ф и НАДФ. Это значит, что энергия, запасенная в АТФ и НАДФ-Нг, перешла в молекулу фосфоглицеринового альдегида, а аккумуляторы разрядились . Кислород, выделяемый растениями в процессе фотосинтеза, как доказано с помощью изотопной методики, получается исключительно из воды, а в молекулы углеводов, образующихся из фосфоглицеринового альдегида, входит кислород двуокиси углерода. Фосфоглицериновый альдегид, реагируя с водой, дает глюкозу, свободный фосфат и кислород  [c.198]

    В самом деле, энергия поступает в организм в форме пищевых веществ (белков, жиров, углеводов), носителей химической энергии высокого потенциала. Эти пищевые вещества, ассимилируясь, в результате обмена могут распадаться. Энергия распада используется организмом на синтез, механическую работу, на производство тепла. Следовательно, в конечном итоге, химическая энергия высокого потенциала после превращений покидает организм в виде теплоты или продуктов распада (мочевина и др.), обладающих низким химическим потенциалом (см. табл. на стр. 27, 28). Это не вызывает сомнений, и с этой точки зрения приложимость второго начала термо-дш1амики к органическому миру очевидна. Однако организмы—незамкнутые системы. Это системы открытые. Отсюда теоретически мыслимо, что, обесценивая общие запасы энергии в результате обмена, организмы сами заряжаются до более высокого потенциала и все более уходят от состояния равновесия, требуемого вторым началом термодинамики. На эту зарядку уходит непрерывно поступающая энергия пищи, подобно тол у как повышается потенциал аккумулятора при его зарядке (А. В. Нагорный). Зеленые растения при этом не являются исключением, ибо для повышения энергетического потенциала ими используется солнечная энергия. [c.33]

    В аккумуляторе электрическая сила может быть потребляема затем непрерывно-равномерно или с любым перерывом, не только для освещения, но и для всякого другого движения, как это видно уже по тому, что при помощи таких аккумуляторов устраивают и движение аэростатов, и движение по железной дороге целых поездов, и движение лодок. В будущем предвидится время, когда получение механической силы будет обходиться без расхода топлива именно при помощи всюду рассеянных естественных, или даровых сил. Они зарядят аккумулятор, а он даст или ток, или работу когда нужно. Ветряная мельница, поставленная на верщину дома, может зарядить в дни или часы более или менее неправильно действующего ветра все аккумуляторы, в этом доме находящиеся, и этим зарядом можно будет затем пользоваться во время безветрия, которое потом наступит. Те естественные стремления, которые были так парадоксальны еще недавно, — воспользоваться водопадами для отдаленных от них городов, теперь близки уже к осуществлению. Наверно не пройдет и десятка лет, как мага.зинирование естественных сил природы начнет уже практиковаться в том виде, в каком ныне и помину об этом нет. Некоторые зачатки истощения каменного угля в Англии дают право думать, что эта страна, передовая во многих отношениях, подаст пример и этого рода естественным людским стрем- лениям. Когда в прошлом году, в апреле месяце, мне пришлось быть в Эдинбурге и видеть знаменитого сэра Вильяма Томсона, то он рассказывал, что в Ирландии уже воспользовались падением нескольких ручьев в море для того, чтобы ими двигать динамо-электрические машины и получать чрез то запас силы, нужной для удаленного завода. Однако, это время еще впереди у нас во всяком случае оно еще дальше, чем в Англии, тем более, что наш запас минерального топлива еще едва-едва почат. Топливо же само по себе есть не что иное, как магазин силы, именно той, которая лучистым образом вытекает из солнца. Солнечный свет и его тепло магазинируются в растениях, превращаются в них в углеродистые вещества, образованные из углекислого газа воздуха, того самого, который происходит при горении угля и углеродистых веществ, в растениях содержащихся. Когда углерод или углеродистое, т. е. органическое, вещество сгорает, тепло развивается и углекислота образуется. Когда же, обратно, из образовавшейся угольной кислоты происходит вновь углерод или углеродистое вещество в растениях, тогда тепло прячется, скрывается, магазинируется. Магазинами [c.162]

chem21.info


Смотрите также