Аккумуляторы для автономных и резервных систем. Автономный аккумулятор


Аккумуляторы для автономного и резервного электроснабжения

Дополнительное оборудование  → Аккумуляторы

Каталог аккумуляторов для солнечных систем и систем резервирования находится здесь

 

Аккумулятор

  Аккумулятор (лат. accumulator накопитель) — это буфер для накопления электрической энергии при помощи обратимых химических процессов. Эта обратимость химических реакций, происходящих внутри аккумулятора и дает ему возможность работать в циклическом режиме постоянных зарядов и разрядов. Чтобы зарядить аккумулятор. нужно пропустить через него ток в направлении встречном направлению тока при разряде. Аккумуляторы можно объединять в моноблоки, и тогда их называют аккумуляторными батареями. Основным параметром, характеризующим аккумулятор является емкость. Емкость - это максимальный заряд, который может принять конкретный аккумулятор. Чтобы измерить емкость аккумулятор разряжают в течении определенного времени до определенного напряжения. Измеряют емкость в кулонах, джоулях и Ач(амперчасах). Иногда, преимущественно в США, емкость измеряется Вт*ч. Соотношение между этими единицами такое 1Вт*ч=3600 Кл, а 1Вт*ч=3600Дж. Правильный заряд аккумулятора происходит в несколько стадий. В большинстве случаев это 4 стадии: стадия накопления(bulk), стадия поглощения(absorbtion), стадия поддержки(float) и стадия выравнивания(equalization). Стадия выравнивания актуальна только для аккумуляторов открытого типа(их еще называют flooded), выполняют её по определенному графику. Операция эта сродни «кипячению» электролита в аккумуляторе, но позволяет перемешать электролит, который со временем расслаивается. В конечном итоге правильное выравнивание позволяет увеличить срок эксплуатации аккумулятора. Основная причина выхода аккумулятора из строя это сульфатация рабочих пластин. Образование окисла на свинцовых пластинах называется сульфатацией. Производители аккумуляторов сообщают, что эта причина составляет до 80% всех отказов аккумуляторов. Кроме перемешивания электролита, выравнивание очищает пластины от сульфатов, и впоследствии нагрузка на пластины распределяется равномерней. Во время процесса выравнивания выделяется значительное количество гремучей смеси кислорода и водорода. Поэтому нужно уделить серьезное внимание вентиляции помещения аккумуляторной. Существуют современные промышленные аккумуляторы открытого типа в которых электролит принудительно циркулирует. Кроме аккумуляторов с жидким электролитом существуют еще АКБ герметичного типа. В таких аккумуляторах выравнивание не нужно, а при остальных стадиях заряда газообразования не происходит.

Схема работы солнечной установки

  Энергия многих источников энергии нужна не тогда, когда она доступна(в первую очередь это относится к солнечным батареям), собственно поэтому её и приходится запасать. Работа нагрузки не должна зависеть от освещенности солнечных батарей, и поэтому даже в дневное время наличие аккумулятора необходимо. Конечно при этом должен быть баланс между приходящей от СБ энергией и количеством энергии, уходящей в нагрузку. Аккумуляторы, применяемые в различных энергетических системах различаются по: номинальному напряжению, номинальной емкости, габаритам, типу электролита, ресурсу, скорости заряда, стоимости, рабочему диапазону температур и пр. Аккумуляторы в фотоэлектрических системах обязаны удовлетворять ряду требований: большая цикличность(количество выдерживаемых циклов заряда/разряда), малый саморазряд, по возможности большой зарядный ток(для гибридных систем с жидкотопливными генераторами), широкий диапазон рабочих температур, а также минимальное обслуживание. С учетом этих требований для различных систем электроснабжения созданы аккумуляторы глубокого разряда. Для солнечных систем существует их модификация solar. Такие АКБ имеют огромный ресурс при циклической работе. Аккумуляторы стартерного типа для работы в таких режимах мало пригодны. Они «не любят» глубокие разряды и разряды малыми токами, имеют большой саморазряд. Срок их службы в таких условиях невелик. Их штатный режим - это кратковременный разряд большим током, тут же восстановление заряда, и ожидание следующего пуска стартера в заряженном состоянии. Если провести аналогию со спортом, то стартерная АКБ это спринтер, а специализированная АКБ это марафонец. Наиболее популярны в настоящее время свинцово-кислотные аккумуляторы. В них меньше удельная стоимость 1кВт*ч, чем у их собратьев, произведенных по другим технологиям. В них больше КПД и шире температурный диапазон работы. Например, эффективность свинцово-кислотного АКБ лежит в пределах 75-80%, а эффективность щелочного АКБ не более 50-60%. По некоторым параметрам щелочные аккумуляторные батареи все таки превосходят «свинец». Это их огромный ресурс в живучести, возможность восстановления путем замены электролита, работа при очень низкой температуре. Но некоторые моменты делают их малопригодными в ФЭС. К ним относятся малый КПД и малая восприимчивость к зарядке малым током. Это приводит к безвозвратной потере значительной части энергии, которая достается с такими усилиями. Вдобавок для аккумуляторной батареи щелочного типа очень трудно подобрать контроллер заряда, а контроллеры с возможностью настройки режимов заряда дорогие.

Гелевый аккумуляторТяговый аккумуляторAGM аккумуляторАккумулятор с жидким электролитомАккумулятор глубокого разрядаАккумулятор для бесперебойного питания

  Теперь перейдем к более подробному рассмотрению аккумуляторов наиболее часто применяемых в системах бесперебойного и автономного электроснабжения. Три основных типа это АКБ технологии AGM, GEL и Flooded.

— GEL-технология Gelled Electrolite появилась в середине XX века. К электролиту подмешивается SiO2, и спустя 3-5 часов электролит становится желеобразным. В этом желе имеется масса пор, которые заполнены электролитом. Именно такая консистенция электролита позволяет работать GEL аккумулятору в любом положении. Аккумулятор такой технологии является необслуживаемым.

— AGM-технология Absorptive Glass Mat появилась на 20 лет позже. Вместо загущенного до желе электролита в них применяется стекломат, который пропитывают электролитом. Поры стекломатов электролит заполняет не до конца. В оставшемся объеме происходит рекомбинация газов.

— Flooded -аккумуляторы с жидким электролитом(заливные) по прежнему имеют широкое применение. Будучи снабжены рециркуляционными клапанами они переходят в класс малообслуживаемых АКБ. Такие клапана не допускают выделения газов, а проверять уровень электролита нужно лишь раз в год. Это снимает ограничения на размещение Flooded аккумуляторов внутри помещений. Аккумуляторы открытого вида более выносливы по сравнению с необслуживаемыми аккумуляторами, удельная стоимость Ач в них ниже и они лучше поддаются балансировке.

  Каждый из вышеописанных типов аккумуляторов имеет подкласс панцирных аккумуляторов. Отличительной особенностью таких АКБ являются решетчатые пластины и электроды в виде трубок. Подобная технология существенно увеличивает число зарядно-разрядных циклов. Причем глубоких разрядов до 80%. Электропогрузчики, ФЭС и другая силовая электротехника широко используют такие АКБ. Маркируют их OPzS и OPzV.

Соединение аккумуляторов

  Увеличение емкости АКБ достигается тем, что моноблоки АКБ объединяются путем параллельного, последовательного или параллельно-последовательного соединения . Для последовательного соединения аккумуляторов необходимо использовать аккумуляторы одной емкости. При этом суммарная емкость равна емкости одного аккумулятора, а напряжение равно сумме напряжений отдельных АКБ. При параллельной коммутации АКБ, напротив, складываются емкости и суммарная емкость увеличивается, а напряжение блока равно исходному напряжению отдельного АКБ. Параллельно-последовательная коммутация ведет к увеличению и напряжения и емкости блока. В один блок можно объединять только идентичные аккумуляторы. Т.е. они должны быть одного напряжения, емкости, типа, возраста, производителя и желательно одной партии выпуска(разница не более 30 дней). С течением времени АКБ, соединенные последовательно, и особенно последовательно-параллельно подвержены разбалансировке. Это значит, что суммарное напряжение последовательных АКБ соответствует норме для зарядного устройства, но в самой цепочке напряжения одиночных аккумуляторов значительно отличаются. Как следствие часть аккумуляторов перезаряжается, а другая часть недозаряжается. Это существенно уменьшает их ресурс. Специальные устройства балансировки позволяют свести к минимуму это вредное явление. В крайнем случае необходимо 1-2 раза в год проводить заряд каждого аккумулятора индивидуально. Для последовательно-параллельного соединения аккумуляторов рекомендуется делать перемычки между средними точками(это несколько способствует самовыравниванию), а также чтобы сбалансированно снимать мощность: плюс нужно "брать" с ближайшего аккумулятора, а минусовой контакт с диагонально расположенного. Чтобы аккумуляторные батареи было удобно обслуживать и монтировать их размещают на металлических стеллажах.

Аккумуляторы для солнечной установкиАккумуляторы для автономной системыАккумуляторы для солнечной батареиАккумуляторы гелевые

  Любой 12-ти вольтовый моноблок состоит из 6 блочков по 2В. В связи с этим чтобы набрать блок аккумуляторов большой емкости рекомендуется не параллельное соединение 12-ти вольтовых моноблоков, а последовательное соединение 2-х вольтовых блоков большой емкости. Ресурс такой «сборки» значительно выше. Кроме того большинство производителей не рекомендует параллелить более 4-х цепочек. Это связано с проблемой разбалансировки и вытекающей из этого различной степени старения отдельных аккумуляторов. Но например германский концерн Sonnenschein разрешает коммутировать параллельно до 10 цепочек. При расчете ФЭС обычно закладывается такая емкость аккумулятора, чтобы после автономии в течении заданного количества пасмурных дней в условиях отсутствия заряда из вне, глубина разряда аккумулятора не превысила 50%, а лучше 30%. Впрочем эти цифры не догма, и все зависит от конкретного проекта. Подробнее об этом можно прочесть в разделе «Расчет фотоэлектрической системы». Правильная эксплуатация аккумуляторной батареи подразумевает соблюдение:

1) Значений зарядных и разрядных токов не выше их номинала. Разряд АКБ недопустимо большим током приведет к быстрому износу пластин и преждевременному старению АКБ. Заряд же большим током снижает объем электролита. Причем в герметичных АКБ выкипание электролита необратимо- АКБ высыхает и погибает.

2) Глубины разряда аккумулятора. Глубокие разряды, а тем более систематические, причина частой замены аккумуляторных батарей и удорожания системы. Типичный график взаимозависимости глубины разряда АКБ и количества циклов заряда/разряда расположен ниже.

Заряд аккумуляторов

Зарядка аккумулятора

3) Величин напряжений стадий заряда и внесение температурной компенсации в эти напряжения при нестабильной температуре в аккумуляторной. На странице контроллеры заряда это описано более подробно. По напряжению аккумулятора невозможно точно определить уровень её заряда, но можно сделать оценку уровня заряда. Таблица ниже показывает эту связь.

 Тип АКБ  25%  50%  75%  100% 
 Свинцово-кислотная   12,4 12,1 11,7 10,5
Щелочная 12,6 12,3 12,0 10,0

 

Напряжения различных стадий заряда также зависят от температуры. Производители указывают температурный коэффициент в документации на продукцию. Обычно этот коэффициент лежит в пределах 0.3-0.5В/градус:

 Температура батареи, Co   Напряжение, В 
0 15,0
10 14,7
20 14,4
30 14,1

 

  Температура внешней среды оказывает существенное влияние на параметры акккумулятора. Работа аккумулятора при высоких температурах резко сокращает ресурс АКБ. Это связано с тем, что все негативные химические процессы ускоряются при повышении температуры. Повышение температуры аккумуляторной батареи всего лишь на 10°С ускоряет коррозию в 2(!) раза.Таким образом аккумулятор, эсплуатируемый при 35°С проживет в 2 раза меньше, чем такой же точно АКБ при 25°С. Следующий график показывает зависимость ресурса аккумулятора от его температуры.

Солнечные батареи и модули

  Не нужно забывать о том, что аккумуляторы нагревается при заряде, и его температура может превышать температуру в помещении на 10-15°С. Особенно это заметено, когда идет ускоренный заряд большим током. Поэтому не рекомендуется располагать аккумуляторы вплотную друг к другу, затрудняя естественный обдув и охлаждение.

  Следующим параметром свинцово-кислотных АКБ является саморазряд. При хранении в стандартных условиях(20°С) аккумуляторы обычно разряжаются со скоростью 3% в месяц. Длительное хранение без подзаряда приводит к сульфатации отрицательных пластин. Периодической подзарядки 1-2 раза в год достаточно для поддержания АКБ в хорошем состоянии. Повышенная температура ускоряет саморазряд. Следующий график иллюстрирует зависимость саморазряда от температуры.

Солнечные батареи и модули

  Рассчитывая систему, нужно помнить о том, что разрядные характеристики АКБ нелинейны. Это значит, что разряд аккумулятора током в 2 раза большим током не сократит время нагрузки в 2 раза. Такая зависимость верна лишь для малых токов. Для больших токов необходимо использовать для расчета таблицы разрядных характеристик, предоставляемые производителем. Ниже располагается для примера одна из таких таблиц.

Солнечные батареи и модули

Солнечные батареи и модули

  В двух словах о тестировании аккумуляторов. Самыми простыми являются КТЦ(контрольно-тренировочный цикл), проверка плотности электролита ареометром и тест при помощи нагрузочной вилки. К более современным методам относятся всевозможные тестеры емкости. Все методы имеют свои плюсы и минусы. КТЦ отнимает много времени, и к тому же АКБ необходимо выводить из эксплуатации. Проверка уровня и плотности электролита не дает полной картины. Качественные тестеры тестируют АКБ за 3-5 секунд, разряжать аккумулятор не нужно, но такие тестеры очень дорогие. В зависимости от назначения системы мы применяем в нашей практике АКБ таких производителей как Sonnenschein, Fiamm, Haze, Rolls, Trojan, Ventura, Shoto, Delta. Эти компании производят очень широкий перечень продукции и возможно подобрать АКБ для любого проекта.

АккумуляторыАккумуляторыАккумуляторыАккумуляторыАккумуляторыАккумуляторыАккумуляторыАккумуляторыАккумуляторы  

  В связи со значительным снижение цен на солнечные панели за последние 2-3 года, АКБ стали самым дорогостоящим элементом ФЭС, имеющим их в своем составе. Их первоначальная стоимость велика, и к тому же они являются практически расходным материалом. Из этого следует, что нужно обращать особое внимание на выбор АКБ для проекта, а также последующую правильную их эксплуатацию. Иначе стоимость системы будет расти как снежный ком. Обычно в документации к АКБ производители указывают срок службы в буферном режиме и при идеальных условиях экплуатации(температура 20°С, редкие неглубокие разряды, постоянный оптимальный заряд). Даже в резервной системе такие условия обеспечить очень трудно. А в автономном режиме картина совершенно иная. Постоянный заряд/разряд - это очень тяжелые условия работы.

  Подводя итог ко всему вышесказанному перечислим факторы снижающие ресурс АКБ

• Перезаряд. Он опасен выкипанием электролита. Этого не допустит контроллер заряда или зарядное устройство инвертора;• Систематический недозаряд. Необходимо 1-2 раза в месяц производить заряд АКБ на 100%;• Глубокий разряд. Не нужно глубоко разряжать АКБ. Это может предотвратить контроллер заряда или инвертор с настройкой напряжения отключения генерации или иное стороннее  устройство. Не так страшен глубокий разряд, как хранение разряженного АКБ. АКБ нужно немедленно заряжать после глубокого разряда;• Разряд АКБ непомерно большими токами. Нагрузки с пусковыми токами нужно учитывать при расчете емкости АКБ. В противном случае пластины внутри АКБ неравномерно истоньшаются и аккумулятор придет в негодность  преждевременно;• Заряд АКБ чрезмерными токами (более 20% емкости) "высушивает" аккумулятор и сокращает срок его службы. Особенно критичны к этому GEL аккумуляторы. Ознакомьтесь на этот счет с рекомендациями производителя;• Высокая температура при эксплуатации. Оптимальная для аккумулятора температура 20-25°C. При температуре 35°C ресурс аккумулятора уменьшается в 2 раза.

  Чтобы сделать попытку восстановить "убитые" АКБ рекомендуется заряжать их очень малым током(1-5% емкости), а затем разряжать большим током(до 50% от емкости АКБ). Эта процедура разрушает слой окисла на пластинах и есть небольшой шанс восстановить часть емкости АКБ. Таких циклов нужно провести не менее 5-10. "Каталог аккумуляторных батарей" предлагаемых нами находится здесь. В ходе обсуждения заказа могут быть предложены и другие марки АКБ, не включенные в каталог.

 

Солнечные батареи и модули

      Бережно относитесь к аккумуляторам и они будут служить Вам положенный срок, а не попадут на свалку раньше времени!

 

www.solbat.su

Автономный аккумулятор

Изобретение относится к электротехнике, а именно к самозаряжающимся автономным электрическим аккумуляторам. Автономный аккумулятор содержит размещенный в корпусе гальванический элемент и снабжен, по меньшей мере, одним фотоэлектрическим преобразователем, размещенным на внешней поверхности корпуса и соединенным с электродами гальванического элемента. Корпус аккумулятора предпочтительно имеет цилиндрическую форму, а аккумулятор содержит фотоэлектрические преобразователи, имеющие форму колец, установленных на цилиндрической поверхности корпуса. Аккумулятор дополнительно может быть снабжен размещенным внутри корпуса контроллером заряда-разряда, включенным между фотоэлектрическим преобразователем и электродами гальванического элемента. Изобретение позволяет обеспечить возможность его зарядки в любом его положении по отношению к источнику света. 2 ил.

 

Изобретение относится к электротехнике, а именно к самозаряжающимся автономным электрическим аккумуляторам.

На протяжении ряда десятилетий для питания различных приборов, освещения и других потребителей тока в качестве накопителей и для сохранения электрической энергии человек использует аккумулятор.

Аккумуляторы самых различных типов и конструкций необходимо заряжать, используя для этой цели различные зарядные устройства и адаптеры, что в ряде случаев не всегда удобно из-за различных технических трудностей и проблем.

Известны никель-кадмиевые аккумуляторы, которые для восстановления подключают к зарядно-разрядному блоку (см. RU 2165009 С2, Н 01 М 10/54, опубл. 19.07.2002).

Наиболее близким к предложенному является аккумулятор с функцией самовосстановления, содержащий размещенный в цилиндрическом корпусе гальванический элемент и фотоэлектрический преобразователь, соединенный с электродами гальванического элемента, расположенный на внешней поверхности корпуса и выполненный в виде листа, накрученного на цилиндрический корпус (патент США 6380710, опуб. 30.04.2005). Для зарядки аккумулятора фотоэлектрический преобразователь разматывают и подвергают воздействию световых лучей его наружную поверхность.

Техническим результатом изобретения является повышение удобства зарядки и пользования аккумулятором за счет исключения необходимости разматывания листового фотоэлектрического преобразователя и специального размещения его наружной поверхности со стороны воздействия световых лучей и обеспечения возможности его зарядки в любом его положении по отношению к источнику света.

Технический результат достигается тем, что аккумулятор содержит размещенный в цилиндрическом корпусе гальванический элемент и фотоэлектрический преобразователь, размещенный на внешней поверхности корпуса и соединенный с электродами гальванического элемента, при этом аккумулятор содержит фотоэлектрические преобразователи, имеющие форму колец, установленных на цилиндрической поверхности корпуса.

Кроме того, аккумулятор может быть снабжен размещенным внутри корпуса контроллером заряда-разряда, включенным между фотоэлектрическим преобразователем и электродами гальванического элемента.

Сущность изобретения поясняется чертежами, где на фиг.1 показана функциональная схема предложенного аккумулятора, на фиг.2 показаны внешний вид аккумулятора и схема расположения и компоновки его элементов.

На фиг.1 и 2 обозначены фотоэлектрический преобразователь 1, чип-контроллер 2 заряда-разряда источника постоянного тока и/или постоянного напряжения и корпус 3 аккумулятора. Позицией 4 обозначена линия связи и выводы чип-контроллера 2 и электродов гальванического элемента аккумулятора. Позицией 5 обозначены линия связи и выход фотоэлектрического преобразователя 1 и дополнительного вывода чип-контроллера 2. Позицией 6 обозначен один из выходов чип-контроллера 2, выполненный с возможностью подключения к потребителю для подачи ему от аккумулятора постоянного тока и/или постоянного напряжения.

Фотоэлектрический преобразователь 1 по-другому может называться солнечной батареей.

Принцип функционирования автономного аккумулятора заключается в следующем. Преобразующий световую энергию в электрическую фотоэлектрический преобразователь 1 посылает полученный электрический сигнал по линии 5 связи чип-контроллера 2 заряда-разряда источника постоянного тока и/или постоянного напряжения, который позволяет не только контролировать включение и выключение заряда гальванического элемента 6, но и регулировать функцию «мягкости» начала заряда-разряда и функцию «мягкости» конца заряда-разряда. Все эти режимы осуществляются с помощью регулятора напряжения, который входит в состав чип-контроллера 2. Вследствие приведенного выше алгоритма функционирования аккумулятора на выходе 7 чип-контроллера 2, являющемся и выходом аккумулятора, появляется электрический сигнал, соответствующий значениям постоянного тока и/или постоянного напряжения от аккумулятора.

В случае применения совместной компоновки аккумулятор с корпусом 3 цилиндрической формы имеет напряжение, например, 1,2 вольта и емкость 0,6 ампер и нанесенных на его поверхность 4-5 фотоэлектрических преобразователей в виде колец с рабочим напряжением каждого 2-2,5 вольта и силой тока 50-60 мА, что вполне достаточно для постоянной его зарядки в течение светового дня. При этом следует иметь в виду, что для увеличения срока службы аккумулятора и практического отсутствия в нем так называемых циклов заряда-разряда внутри корпуса устройства для эксплуатации аккумулятора находится регулятор напряжения контроллера, позволяющий не только контролировать включение и выключение зарядки, но и имеющий функцию «мягкости» начала заряда-разряда и функцию «мягкости» конца заряда-разряда аккумулятора 3.

Вместе с этим в чип-контроллере 2 заряда-разряда источника постоянного тока и/или постоянного напряжения имеется функция отключения аккумулятора от потребителя в случае понижения напряжения и емкости в нем ниже допустимого предела, т.е. ниже их заданных значений. В связи с этим при работе всего устройства и входящего в него аккумулятора их невозможно вывести из строя при глубоком разряде аккумулятора.

Таким образом, в данном устройстве отсутствуют циклы «заряд-разряд», полный разряд аккумулятора, имеется возможность заряда (самовосстановления) аккумулятора без каких-либо зарядных устройств, возможность заряда аккумулятора 3 без демонтажа из корпуса всего устройства для эксплуатации аккумулятора, возможность заряда аккумулятора 3 в любом положении, в каком бы он не находился по отношению к источникам света.

Использование данного изобретения позволяет также увеличить срок службы аккумулятора и устранить циклы «заряд-разряд» аккумулятора.

В случае применения аккумулятора, не имеющего эффекта памяти, рассчитанного на большой запас циклов заряд-разряд и не боящегося глубокой разрядки и перезарядки или уже имеющего в своей конструкции устройство контроля зарядкой и разрядкой, чип-контроллер 2 зарядки-разрядки может быть исключен из функциональной схемы автономного аккумулятора.

Предложенный аккумулятор имеет следующие особенности.

а) встроенный в корпус сверхмалый солнечный источник тока,

б) встроенный в корпус чип-контроллер - регулятор напряжения,

в) отсутствие у аккумулятора циклов заряд-разряд,

г) отсутствие полного разряда аккумулятора,

д) возможность заряда (самовосстановления) аккумулятора без применения каких-либо дополнительных зарядных устройств,

е) возможность заряда аккумулятора без демонтажа из корпуса в устройстве-потребителе в случае применения прозрачного корпуса изделия,

ж) стоимость применяемого в аккумуляторе дополнительного оборудования - фотопреобразователь, чип-контроллер заряда-разряда, ничтожно мала и составляет менее 10% от стоимости всего изделия, следовательно, будет доступна широкому кругу потребителей,

з) возможность заряда аккумулятора в любом положении, в каком бы он не находился по отношению к свету, благодаря кольцеобразной схеме расположения фотопреобразователя.

1. Аккумулятор, содержащий размещенный в цилиндрическом корпусе гальванический элемент и, по меньшей мере, один фотоэлектрический преобразователь, размещенный на внешней поверхности корпуса и соединенный с электродами гальванического элемента, отличающийся тем, что содержит фотоэлектрические преобразователи, имеющие форму колец, установленных на цилиндрической поверхности корпуса.

2. Аккумулятор по п.1, отличающийся тем, что он снабжен размещенным внутри корпуса контроллером заряда-разряда, включенным между фотоэлектрическим преобразователем и электродами гальванического элемента.

www.findpatent.ru

Как выбрать аккумулятор для автономного или резервного питания? © Солнечные

Выбор аккумулятора для системы автономного или резервного питания

Аккумулятор фактически является расходным материалом в солнечной электростанции или в системе автономного или резервного питания. И чем лучше Вы подберете аккумулятор к своей системе, тем дольше он проработает и тем меньше в конечном итоге будет стоимость электроэнергии, вырабатываемой Вашей системой.

На что обратить внимание при выборе аккумуляторных батарей?

Попробуем дать несколько советов, следуя которым можно подобрать оптимальную модель:

  1. Основным параметром любого аккумулятора является его емкость. В зависимости от того, в какой системе он будет применяться, нужно выбирать необходимый номинал.

В случае, если аккумулятор будет применяться в системе резервного питания и соответственно разряжаться он будет довольно редко (при сбое основного источника электричества), можно рассчитывать необходимую емкость исходя из 100% цикла разряда. И хотя 100% разряд вреден для любых свинцовых аккумуляторов, особенно, если нет возможности сразу их зарядить, в случае эксплуатации резервной системы таких разрядов накопится максимум десяток за год. А любой свинцовый аккумулятор (кроме автомобильных) способен выдержать до 200 полных (на 100%) циклов разрядки. То есть, при таком режиме теоретический срок службы должен составить 200/10=20 лет, однако максимальный срок службы аккумуляторных батарей равен 10 годам. Поэтому для систем резервного питания не имеет никакого смысла приобретать избыточные емкости исходя из 30% или 50% цикла разряда.

Саму же ёмкость нужно рассчитывать исходя из количества энергии, которую необходимо запасти. Например, поставлена задача обеспечить круглосуточную работу насоса системы отопления и периодическую работу освещения:

  • мощность насоса — 50 Вт (работает 24 часа в сутки),
  • мощность нескольких энергосберегающих ламп — 100 Вт (работают в общей сложности 3 часа в сутки),
  • срок работы резервной системы — 2 суток.

Необходимо рассчитать емкость аккумуляторной батареи с учетом 100% разрядного цикла.

Расход электроэнергии за 2 суток составит 50*24*2+100*3*2=3000 Вт*час.

С учетом потерь в инверторе (возьмем для расчета — 10%), необходим запас энергии 3000+10%=3300 Вт*час.

При напряжении 12 В, необходимый номинал составит 3300/12=275 А*час, т.е. в этом случае необходимы 2 батареи емкостью по 140 А*ч.

Данный расчет приведен для случая, когда отсутствует автономный источник энергии, например в виде солнечных батарей. Если же в системе резервного питания предусмотрены солнечные батареи и допустим они выдают 500 Вт*сутки (а столько выдает одна 100 Ваттная панель в солнечную погоду), то необходимо внести соответствующую поправку в расчет, а именно:

При напряжении 12 В, необходимый номинал составит (3300-500*2)/12=192 А*час, т.е в этом случае будет достаточно 2-х батарей емкостью по 100 А*ч.

Для автономной системы желательно производить расчет исходя из 30% разрядного цикла, поскольку в этом случае срок службы аккумуляторов будет фактически определяться количеством циклов заряда/разряда, а это количество тем больше, чем меньше глубина разрядки.

  • После того, как Вы определились с емкостью, необходимо выбрать конкретную модель/марку аккумулятора.

    При выборе марки нужно обратить внимание на то, для скольки-часового разряда указана емкость . Дело в том, что разные производители указывают номинальную емкость для разных условий, например для 10-и часового или для 20-и часового разряда. Та марка, у которой указан номинал для 10-и часов, будет обладать большей реальной емкостью, чем 20-и часовая при условии одинакового номинала.

  • Также, при выборе марки стоит сравнить вес аккумуляторных батарей при одинаковой емкости. Дело в том, что фактически емкость свинцовых аккумуляторных батарей определяется весом активной массы свинца, а он занимает большую часть в её весе. Соответственно, батарея с большим весом скорее всего будет обладать лучшими характеристиками (большей реальной емкостью и количеством циклов заряда/разряда).
  • Одним из важных параметров является тип аккумуляторной батареи — AGM, GEL (гелевый) или жидко-кислотный (чаще всего - автомобильный).

    Для систем автономного питания применять автомобильные аккумуляторы не рекомендуется по той причине, что они не предназначены для длительной разрядки малыми токами и имеют минимальное число циклов среди прочих типов (обычно, не более 50). Их основное предназначение — отдать очень большой ток стартеру в течение нескольких секунд при старте двигателя.

    Однако, существует еще один тип жидко-кислотных аккумуляторов, которые специально предназначены для разрядки малыми токами, так называемые OPzS. Этот тип имеет максимальное число циклов заряда/разряда, в большинстве случаев является обслуживаемым (т.е. требующим контроля за параметрами электролита), а кроме того имеет максимальную цену и по этой причине мало распространен.

    Самым распространенным по причине низкой стоимости является AGM тип. Более дорогой, гелевый (GEL) тип также находит свое применение в солнечных электростанциях. О том, какой аккумулятор выбрать, AGM или гелевый. читайте на нашем сайте.

  • При выборе аккумуляторной батареи для автономной системы нужно отдать предпочтение марке с максимальным числом циклов заряда/разряда для требуемой глубины разрядки. О причинах этого уже сказано выше.
  • В свою очередь, для резервных систем нужно выбирать модель с максимальным сроком службы. Соответственно, лучше отдать предпочтение моделям гелевых или AGM аккумуляторов с 10-и летним сроком службы.
  • http://www.solnechnye.ru

    legkoe-delo.ru

    автономный аккумулятор - патент РФ 2269186

    Изобретение относится к электротехнике, а именно к самозаряжающимся автономным электрическим аккумуляторам. Автономный аккумулятор содержит размещенный в корпусе гальванический элемент и снабжен, по меньшей мере, одним фотоэлектрическим преобразователем, размещенным на внешней поверхности корпуса и соединенным с электродами гальванического элемента. Корпус аккумулятора предпочтительно имеет цилиндрическую форму, а аккумулятор содержит фотоэлектрические преобразователи, имеющие форму колец, установленных на цилиндрической поверхности корпуса. Аккумулятор дополнительно может быть снабжен размещенным внутри корпуса контроллером заряда-разряда, включенным между фотоэлектрическим преобразователем и электродами гальванического элемента. Изобретение позволяет обеспечить возможность его зарядки в любом его положении по отношению к источнику света. 2 ил. автономный аккумулятор, патент № 2269186

    Рисунки к патенту РФ 2269186

    автономный аккумулятор, патент № 2269186 автономный аккумулятор, патент № 2269186

    Изобретение относится к электротехнике, а именно к самозаряжающимся автономным электрическим аккумуляторам.

    На протяжении ряда десятилетий для питания различных приборов, освещения и других потребителей тока в качестве накопителей и для сохранения электрической энергии человек использует аккумулятор.

    Аккумуляторы самых различных типов и конструкций необходимо заряжать, используя для этой цели различные зарядные устройства и адаптеры, что в ряде случаев не всегда удобно из-за различных технических трудностей и проблем.

    Известны никель-кадмиевые аккумуляторы, которые для восстановления подключают к зарядно-разрядному блоку (см. RU 2165009 С2, Н 01 М 10/54, опубл. 19.07.2002).

    Наиболее близким к предложенному является аккумулятор с функцией самовосстановления, содержащий размещенный в цилиндрическом корпусе гальванический элемент и фотоэлектрический преобразователь, соединенный с электродами гальванического элемента, расположенный на внешней поверхности корпуса и выполненный в виде листа, накрученного на цилиндрический корпус (патент США 6380710, опуб. 30.04.2005). Для зарядки аккумулятора фотоэлектрический преобразователь разматывают и подвергают воздействию световых лучей его наружную поверхность.

    Техническим результатом изобретения является повышение удобства зарядки и пользования аккумулятором за счет исключения необходимости разматывания листового фотоэлектрического преобразователя и специального размещения его наружной поверхности со стороны воздействия световых лучей и обеспечения возможности его зарядки в любом его положении по отношению к источнику света.

    Технический результат достигается тем, что аккумулятор содержит размещенный в цилиндрическом корпусе гальванический элемент и фотоэлектрический преобразователь, размещенный на внешней поверхности корпуса и соединенный с электродами гальванического элемента, при этом аккумулятор содержит фотоэлектрические преобразователи, имеющие форму колец, установленных на цилиндрической поверхности корпуса.

    Кроме того, аккумулятор может быть снабжен размещенным внутри корпуса контроллером заряда-разряда, включенным между фотоэлектрическим преобразователем и электродами гальванического элемента.

    Сущность изобретения поясняется чертежами, где на фиг.1 показана функциональная схема предложенного аккумулятора, на фиг.2 показаны внешний вид аккумулятора и схема расположения и компоновки его элементов.

    На фиг.1 и 2 обозначены фотоэлектрический преобразователь 1, чип-контроллер 2 заряда-разряда источника постоянного тока и/или постоянного напряжения и корпус 3 аккумулятора. Позицией 4 обозначена линия связи и выводы чип-контроллера 2 и электродов гальванического элемента аккумулятора. Позицией 5 обозначены линия связи и выход фотоэлектрического преобразователя 1 и дополнительного вывода чип-контроллера 2. Позицией 6 обозначен один из выходов чип-контроллера 2, выполненный с возможностью подключения к потребителю для подачи ему от аккумулятора постоянного тока и/или постоянного напряжения.

    Фотоэлектрический преобразователь 1 по-другому может называться солнечной батареей.

    Принцип функционирования автономного аккумулятора заключается в следующем. Преобразующий световую энергию в электрическую фотоэлектрический преобразователь 1 посылает полученный электрический сигнал по линии 5 связи чип-контроллера 2 заряда-разряда источника постоянного тока и/или постоянного напряжения, который позволяет не только контролировать включение и выключение заряда гальванического элемента 6, но и регулировать функцию «мягкости» начала заряда-разряда и функцию «мягкости» конца заряда-разряда. Все эти режимы осуществляются с помощью регулятора напряжения, который входит в состав чип-контроллера 2. Вследствие приведенного выше алгоритма функционирования аккумулятора на выходе 7 чип-контроллера 2, являющемся и выходом аккумулятора, появляется электрический сигнал, соответствующий значениям постоянного тока и/или постоянного напряжения от аккумулятора.

    В случае применения совместной компоновки аккумулятор с корпусом 3 цилиндрической формы имеет напряжение, например, 1,2 вольта и емкость 0,6 ампер и нанесенных на его поверхность 4-5 фотоэлектрических преобразователей в виде колец с рабочим напряжением каждого 2-2,5 вольта и силой тока 50-60 мА, что вполне достаточно для постоянной его зарядки в течение светового дня. При этом следует иметь в виду, что для увеличения срока службы аккумулятора и практического отсутствия в нем так называемых циклов заряда-разряда внутри корпуса устройства для эксплуатации аккумулятора находится регулятор напряжения контроллера, позволяющий не только контролировать включение и выключение зарядки, но и имеющий функцию «мягкости» начала заряда-разряда и функцию «мягкости» конца заряда-разряда аккумулятора 3.

    Вместе с этим в чип-контроллере 2 заряда-разряда источника постоянного тока и/или постоянного напряжения имеется функция отключения аккумулятора от потребителя в случае понижения напряжения и емкости в нем ниже допустимого предела, т.е. ниже их заданных значений. В связи с этим при работе всего устройства и входящего в него аккумулятора их невозможно вывести из строя при глубоком разряде аккумулятора.

    Таким образом, в данном устройстве отсутствуют циклы «заряд-разряд», полный разряд аккумулятора, имеется возможность заряда (самовосстановления) аккумулятора без каких-либо зарядных устройств, возможность заряда аккумулятора 3 без демонтажа из корпуса всего устройства для эксплуатации аккумулятора, возможность заряда аккумулятора 3 в любом положении, в каком бы он не находился по отношению к источникам света.

    Использование данного изобретения позволяет также увеличить срок службы аккумулятора и устранить циклы «заряд-разряд» аккумулятора.

    В случае применения аккумулятора, не имеющего эффекта памяти, рассчитанного на большой запас циклов заряд-разряд и не боящегося глубокой разрядки и перезарядки или уже имеющего в своей конструкции устройство контроля зарядкой и разрядкой, чип-контроллер 2 зарядки-разрядки может быть исключен из функциональной схемы автономного аккумулятора.

    Предложенный аккумулятор имеет следующие особенности.

    а) встроенный в корпус сверхмалый солнечный источник тока,

    б) встроенный в корпус чип-контроллер - регулятор напряжения,

    в) отсутствие у аккумулятора циклов заряд-разряд,

    г) отсутствие полного разряда аккумулятора,

    д) возможность заряда (самовосстановления) аккумулятора без применения каких-либо дополнительных зарядных устройств,

    е) возможность заряда аккумулятора без демонтажа из корпуса в устройстве-потребителе в случае применения прозрачного корпуса изделия,

    ж) стоимость применяемого в аккумуляторе дополнительного оборудования - фотопреобразователь, чип-контроллер заряда-разряда, ничтожно мала и составляет менее 10% от стоимости всего изделия, следовательно, будет доступна широкому кругу потребителей,

    з) возможность заряда аккумулятора в любом положении, в каком бы он не находился по отношению к свету, благодаря кольцеобразной схеме расположения фотопреобразователя.

    ФОРМУЛА ИЗОБРЕТЕНИЯ

    1. Аккумулятор, содержащий размещенный в цилиндрическом корпусе гальванический элемент и, по меньшей мере, один фотоэлектрический преобразователь, размещенный на внешней поверхности корпуса и соединенный с электродами гальванического элемента, отличающийся тем, что содержит фотоэлектрические преобразователи, имеющие форму колец, установленных на цилиндрической поверхности корпуса.

    2. Аккумулятор по п.1, отличающийся тем, что он снабжен размещенным внутри корпуса контроллером заряда-разряда, включенным между фотоэлектрическим преобразователем и электродами гальванического элемента.

    www.freepatent.ru

    Автономный аккумулятор | Банк патентов

    Полезная модель относится к электротехнике, а именно к самозаряжающимся автономным электрическим аккумуляторам.

    На протяжении ряда десятилетий для питания различных приборов, освещения и других потребителей тока в качестве накопителей и для сохранения электрической энергии человек использует аккумулятор. Аккумуляторы самых различных типов и конструкций необходимо заряжать, используя для этой цели различные зарядные устройства и адаптеры, что в ряде случаев не всегда удобно из-за различных технических трудностей и проблем.

    Известны никель-кадмиевые аккумуляторы, которые для восстановления подключают к зарядно-разрядному блоку (см. RU 2165009 С2, Н 01 М 10/54, опубл. 19.07.2002).

    Задачей полезной модели является создание аккумулятора с функцией самовосстановления своей емкости. Техническим результатом полезной модели является повышение удобства зарядки и пользования аккумулятором.

    Технический результат достигается тем, что аккумулятор, содержащий размещенный в корпусе гальванический элемент снабжен, по меньшей мере, одним фотоэлектрическим преобразователем, размещенным на внешней поверхности корпуса и соединенным с электродами гальванического элемента.

    Корпус аккумулятора предпочтительно имеет цилиндрическую форму, а аккумулятор содержит фотоэлектрические преобразователи, имеющие форму колец, установленных на цилиндрической поверхности корпуса.

    Кроме того, аккумулятор может быть снабжен размещенным внутри корпуса контроллером заряда-разряда, включенным между

    фотоэлектрическим преобразователем и электродами гальванического элемента.

    Сущность полезной модели поясняется чертежами, где на фиг.1 показана функциональная схема предложенного аккумулятора, на фиг.2 показаны внешний вид аккумулятора и схема расположения и компоновки его элементов. На фиг.1 и 2 обозначены фотоэлектрический преобразователь 1, чип-контроллер 2 заряда-разряда источника постоянного тока и/или постоянного напряжения и корпус 3 аккумулятора. Позицией 4 обозначена линия связи и выводы чип-контроллера 2 и электродов гальванического элемента аккумулятора. Позицией 5 обозначены линия связи и выход фотоэлектрического преобразователя 1 и дополнительного вывода чип-контроллера 2. Позицией 6 обозначен один из выходов чип-контроллера 2, выполненный с возможностью подключения к потребителю для подачи ему от аккумулятора постоянного тока и/или постоянного напряжения.

    Фотоэлектрический преобразователь 1 по-другому может называться солнечной батареей.

    Принцип функционирования автономного аккумулятора заключается в следующем. Преобразующий световую энергию в электрическую фотоэлектрический преобразователь 1 посылает полученный электрический сигнал по линии 5 связи чип-контроллера 2 заряда-разряда источника постоянного тока и/или постоянного напряжения, который позволяет не только контролировать включение и выключение заряда гальванического элемента 6, но и регулировать функцию «мягкости» начала заряда-разряда и функцию «мягкости» конца заряда-разряда. Все эти режимы осуществляются с помощью регулятора напряжения, который входит в состав чип-контроллера 2. Вследствие приведенного выше алгоритма функционирования аккумулятора на выходе 7 чип-контроллера 2, являющемся и выходом аккумулятора, появляется электрический

    сигнал, соответствующий значениям постоянного тока и/или постоянного напряжения от аккумулятора.

    В случае применения совместной компоновки аккумулятор с корпусом 3 цилиндрической формы имеет напряжение, например, 1,2 вольта и емкость 0,6 ампер и нанесенных на его поверхность 4-5 фотоэлектрических преобразователей в виде колец с рабочим напряжением каждого 2-2,5 вольта и силой тока 50-60 ма, что вполне достаточно для постоянной его зарядки в течение светового дня. При этом следует иметь в виду, что для увеличения срока службы аккумулятора и практического отсутствия в нем так называемых циклов заряда-разряда внутри корпуса устройства для эксплуатации аккумулятора находится регулятор напряжения контроллера, позволяющий не только контролировать включение и выключение зарядки, но и имеющий функцию «мягкости» начала заряда-разряда и функцию «мягкости» конца заряда-разряда аккумулятора 3.

    Вместе с этим в чип-контроллере 2 заряда-разряда источника постоянного тока и/или постоянного напряжения имеется функция отключения аккумулятора от потребителя в случае понижения напряжения и емкости в нем ниже допустимого предела, т.е. ниже их заданных значений. В связи с этим при работе всего устройства и входящего в него аккумулятора их невозможно вывести из строя при глубоком разряде аккумулятора.

    Таким образом, в данном устройстве отсутствуют циклы «заряд-разряд», полный разряд аккумулятора, имеется возможность заряда (самовосстановления) аккумулятора без каких-либо зарядных устройств, возможность заряда аккумулятора 3 без демонтажа из корпуса всего устройства для эксплуатации аккумулятора, возможность заряда аккумулятора 3 в любом положении, в каком бы он не находился по отношению к источникам света.

    Использование данной полезной модели позволяет также увеличить срок службы аккумулятора и устранить циклы «заряд-разряд» аккумулятора.

    В случае применения аккумулятора, не имеющего эффекта памяти, рассчитанного на большой запас циклов заряд-разряд и не боящегося глубокой разрядки и перезарядки или уже имеющего в своей конструкции устройство контроля зарядкой и разрядкой, чип-контроллер 2 зарядки-разрядки может быть исключен из функциональной схемы автономного аккумулятора.

    Предложенный аккумулятор имеет следующие особенности.

    а) встроенный в корпус сверхмалый солнечный источник тока,

    б) встроенный в корпус чип-контроллер -регулятор напряжения,

    в) отсутствие у аккумулятора циклов заряд-разряд,

    г) отсутствие полного разряда аккумулятора,

    д) возможность заряда (самовосстановления) аккумулятора без применения каких либо дополнительных зарядных устройств,

    е) возможность заряда аккумулятора без демонтажа из корпуса в устройстве-потребителе в случае применения прозрачного корпуса изделия,

    ж) стоимость применяемого в аккумуляторе дополнительного

    оборудования - фотопреобразователь, чип-контроллер заряда-разряда, ничтожно мала и составляет менее 10% от стоимости всего изделия, следовательно, будет доступна широкому кругу потребителей,

    з) возможность заряда аккумулятора в любом положении, в каком бы он не находился по отношению к свету, благодаря кольцеобразной схеме расположения фотопреобразователя.

    bankpatentov.ru


    Смотрите также