Получить энергию – важно, но ещё важнее – сохранить! Аккумуляторы энергия


Какие бывают накопители энергии

Природа подарила человеку разнообразные источники энергии: солнце, ветер, реки и другие. Недостатком этих генераторов бесплатной энергии является отсутствие стабильности. Поэтому в периоды избытка энергии ее запасают в накопителях и расходуют в периоды временного спада. Накопители энергии характеризуют следующие параметры:

  • объем запасаемой энергии;
  • скорость ее накопления и отдачи;
  • удельная плотность;
  • сроки хранения энергии;
  • надежность;
  • стоимость изготовления и обслуживания и другие.

накопитель энергии для телефона

Методов систематизации накопителей множество. Одним из самых удобных является классификация по типу энергии, используемой в накопителе, и по способу ее накопления и отдачи. Накопители энергии подразделяются на следующие основные виды:

  • механические;
  • тепловые;
  • электрические;
  • химические.

Накопление потенциальной энергии

Суть этих устройств незамысловата. При подъеме груза происходит накопление потенциальной энергии, при опускании она совершает полезную работу. Особенности конструкции зависят от вида груза. Это может быть твердое тело, жидкость или сыпучее вещество. Как правило, конструкции устройств этого типа предельно просты, отсюда высокая надежность и длительный срок службы. Время хранения запасенной энергии зависит от долговечности материалов и может достигать тысячелетий. К сожалению, такие устройства обладают низкой удельной энергоемкостью.

Механические накопители кинетической энергии

В этих устройствах энергия хранится в движении какого-либо тела. Обычно это колебательное или поступательное движение.

Кинетическая энергия в колебательных системах сосредоточена в возвратно-поступательном движении тела. Энергия подается и расходуется порциями, в такт с движением тела. Механизм достаточно сложный и капризный в настройке. Широко используется в механических часах. Количество запасаемой энергии обычно невелико и годится только для работы самого устройства.

Накопители, использующие энергию гироскопа

Запас кинетической энергии сосредоточен во вращающемся маховике. Удельная энергия маховика значительно превосходит энергию аналогичного статического груза. Имеется возможность в короткий промежуток времени производить прием или отдачу значительной мощности. Время хранения энергии невелико, и для большинства конструкций ограничено несколькими часами. Современные технологии позволяют довести время хранения энергии до нескольких месяцев. Маховики очень чувствительны к сотрясениям. Энергия устройства находится в прямой зависимости от скорости его вращения. Поэтому в процессе накопления и отдачи энергии происходит изменение скорости вращения маховика. А для нагрузки, как правило, требуется постоянная, невысокая скорость вращения.

накопители энергии

Более перспективными устройствами являются супермаховики. Их изготавливают из стальной ленты, синтетического волокна или проволоки. Конструкция может быть плотной или иметь пустое пространство. При наличии свободного места витки ленты перемещаются к периферии вращения, момент инерции маховика изменяется, часть энергии запасается в подвергшейся деформации пружине. В таких устройствах скорость вращения более стабильна, чем в цельнотелых конструкциях, а их энергоемкость гораздо выше. Кроме того, они более безопасны.

Современные супермаховики изготовляют из кевларового волокна. Они вращаются в вакуумной камере на магнитном подвесе. Способны сохранять энергию несколько месяцев.

Механические накопители, использующие силы упругости

Этот тип устройств способен запасать огромную удельную энергию. Из механических накопителей он обладает наибольшей энергоемкостью для устройств с габаритами в несколько сантиметров. Большие маховики с очень высокой скоростью вращения имеют гораздо большую энергоемкость, но они очень уязвимы от внешних факторов и имеют меньшее время хранения энергии.

Механические накопители, использующие энергию пружины

Способны обеспечить самую большую механическую мощность из всех классов накопителей энергии. Она ограничена лишь пределом прочности пружины. Энергия в сжатой пружине может храниться несколько десятилетий. Однако из-за постоянной деформации в металле накапливается усталость, и емкость пружины снижается. В то же время высококачественные стальные пружины при соблюдении условий эксплуатации могут работать сотни лет без ощутимой потери емкости.

накопители энергии для дома

Функции пружины могут выполнять любые упругие элементы. Резиновые жгуты, например, в десятки раз превосходят стальные изделия по запасаемой энергии на единицу массы. Но срок службы резины из-за химического старения составляет всего несколько лет.

Механические накопители, использующие энергию сжатых газов

В этом типе устройств накопление энергии происходит за счет сжатия газа. При наличии избытка энергии газ при помощи компрессора закачивается под давлением в баллон. По мере необходимости сжатый газ используется для вращения турбины или электрогенератора. При небольших мощностях вместо турбины целесообразно использовать поршневой мотор. Газ в емкости под давлением в сотни атмосфер обладает высокой удельной плотностью энергии в течение нескольких лет, а при наличии качественной арматуры - и десятки лет.

Накопление тепловой энергии

Большая часть территории нашей страны расположена в северных районах, поэтому значительная часть энергии вынужденно расходуется для обогрева. В связи с этим приходится регулярно решать проблему сохранения тепла в накопителе и извлечении его оттуда при необходимости.

накопители тепловой энергии

В большинстве случаев не удается достичь высокой плотности запасаемой тепловой энергии и сколько-нибудь значительных сроков ее сохранения. Существующие эффективные устройства в силу ряда своих особенностей и высокой цены не подходят для широкого применения.

Накопление за счет теплоемкости

Это один из самых древних способов. В его основе лежит принцип накопления тепловой энергии при нагревании вещества и отдачи тепла при его охлаждении. Конструкция таких накопителей чрезвычайно проста. Им может быть кусок любого твердого вещества либо закрытая емкость с жидким теплоносителем. Накопители тепловой энергии имеют очень большой срок службы, практически неограниченное количество циклов накопления и отдачи энергии. Но время хранения не превышает нескольких суток.

Аккумулирование электрической энергии

Электрическая энергия - это самая удобная ее форма в современном мире. Именно поэтому электрические накопители получили широкое распространение и наибольшее развитие. К сожалению, удельная емкость дешевых аппаратов невелика, а приборы с большой удельной емкостью слишком дороги и недолговечны. Накопители электрической энергии - это конденсаторы, ионисторы, аккумуляторы.

Конденсаторы

Это самый массовый вид накопителей энергии. Конденсаторы способны работать при температуре от -50 до +150 градусов. Количество циклов накопления-отдачи энергии – десятки миллиардов в секунду. Соединяя несколько конденсаторов параллельно, можно легко получить емкость необходимой величины. Кроме того, существуют переменные конденсаторы. Изменение емкости таких конденсаторов может производиться механическим или электрическим способом либо воздействием температуры. Чаще всего переменные конденсаторы можно встретить в колебательных контурах.

переменные конденсаторы

Конденсаторы делятся на два класса – полярные и неполярные. Срок службы полярных (электролитических) меньше, чем неполярных, они больше зависят от внешних условий, но в то же время обладают большей удельной емкостью.

Как накопители энергии конденсаторы - не очень удачные приборы. Они имеют малую емкость и незначительную удельную плотность запасаемой энергии, а время ее хранения исчисляется секундами, минутами, редко часами. Конденсаторы нашли применение в основном в электронике и силовой электротехнике.

Расчет конденсатора, как правило, не вызывает затруднений. Вся необходимая информация по разным типам конденсаторов представлена в технических справочниках.

Ионисторы

Эти приборы занимают промежуточное место между полярными конденсаторами и аккумуляторами. Иногда их называют «суперконденсаторами». Соответственно, они имеют огромное количество этапов заряда-разряда, емкость больше, чем у конденсаторов, но немного меньше, чем у небольших аккумуляторов. Время хранения энергии – до нескольких недель. Ионисторы очень чувствительны к температуре.

Силовые аккумуляторы

Электрохимические аккумуляторы используются, если требуется запасать достаточно много энергии. Лучше всего для этой цели подходят свинцово-кислотные приборы. Их изобрели около 150 лет назад. И с тех пор в устройство аккумулятора не внесли ничего принципиально нового. Появилось много специализированных моделей, значительно возросло качество комплектующих изделий, повысилась надежность аккумуляторной батареи. Примечательно, что устройство аккумулятора, созданного разными производителями, для разных целей отличается лишь в незначительных деталях.

Электрохимические аккумуляторы подразделяются на тяговые и стартовые. Тяговые используются в электротранспорте, источниках бесперебойного питания, электроинструментах. Для таких аккумуляторов характерны длительный равномерный разряд и большая его глубина. Стартовые аккумуляторы могут выдать большой ток в короткий промежуток времени, но глубокий разряд для них недопустим.

устройство аккумулятора

Электрохимические аккумуляторы имеют ограниченное количество циклов заряда-разряда, в среднем от 250 до 2000. Даже при отсутствии эксплуатации через несколько лет они выходят из строя. Электрохимические аккумуляторы чувствительны к температуре, требуют длительного времени заряда и строгого соблюдения правил эксплуатации.

Прибор необходимо периодически подзаряжать. Заряд аккумулятора, установленного на транспортное средство, производится в движении от генератора. В зимнее время этого недостаточно, холодная батарея плохо принимает заряд, а потребление электроэнергии на запуск двигателя возрастает. Поэтому необходимо дополнительно проводить заряд аккумулятора в теплом помещении специальным зарядным устройством. Одним из существенных недостатков свинцово-кислотных приборов является их большой вес.

Аккумуляторы для маломощных устройств

Если требуются мобильные устройства с малым весом, то выбирают следующие типы аккумуляторов: никель-кадмиевые, литий-ионные, металл-гибридные, полимер-ионные. У них выше удельная емкость, но и цена много больше. Их применяют в мобильных телефонах, ноутбуках, фотоаппаратах, видеокамерах и других малогабаритных устройствах. Разные типы аккумуляторов отличаются своими параметрами: количеством циклов зарядки, сроком хранения, емкостью, размером и т. п.

Литий-ионные аккумуляторы большой мощности применяют в электромобилях и гибридных машинах. Они имеют небольшой вес, большую удельную емкость и высокую надежность. В то же время литий-ионные аккумуляторы очень пожароопасны. Возгорание может произойти от короткого замыкания, механической деформации или разрушения корпуса, нарушений режимов заряда или разряда аккумулятора. Потушить пожар довольно трудно из-за высокой активности лития.

типы аккумуляторов

Аккумуляторы являются основой многих приборов. Например, накопитель энергии для телефона – это компактный внешний аккумулятор, помещенный в прочный, влагозащищенный корпус. Он позволяет зарядить или запитать сотовый телефон. Мощные мобильные накопители энергии способны заряжать любые цифровые аппараты, даже ноутбуки. В таких устройствах устанавливают, как правило, литий-ионные аккумуляторы большой емкости. Накопители энергии для дома также не обходятся без аккумуляторных батарей. Но это гораздо более сложные устройства. Кроме аккумулятора в их состав входят зарядное устройство, система управления, инвертор. Аппараты могут работать как от стационарной сети, так и от других источников. Выходная мощность в среднем составляет 5 кВт.

Накопители химической энергии

Различают «топливные» и «безтопливные» типы накопителей. Для них требуются специальные технологии и нередко громоздкое высокотехнологичное оборудование. Используемые процессы позволяют получать энергию в разных видах. Термохимические реакции могут проходить как при низкой, так и при высокой температуре. Компоненты для высокотемпературных реакций вводят только тогда, когда необходимо получить энергию. До этого их хранят отдельно, в разных местах. Компоненты для низкотемпературных реакций обычно находятся в одной емкости.

Накопление энергии наработкой топлива

Этот способ включает два совершенно независимых этапа: накопление энергии («зарядка») и ее использование («разрядка»). Традиционное топливо, как правило, обладает большой удельной емкостью энергии, возможностью продолжительного хранения, удобством использования. Но жизнь не стоит на месте. Внедрение новых технологий предъявляет повышенные требования к топливу. Задача решается путем улучшения существующих и создания новых, высокоэнергетических видов топлива.

Широкому внедрению новых образцов препятствует недостаточная отработанность технологических процессов, большая пожаро- и взрывоопасность в работе, необходимость высококвалифицированного персонала, высокая стоимость технологии.

Безтопливное химическое накопление энергии

В этом виде накопителей энергия запасается за счет преобразования одних химических веществ в другие. Например, гашеная известь при нагреве переходит в негашеное состояние. При "разрядке" запасенная энергия выделяется в виде тепла и газа. Именно так происходит при гашении извести водой. Для того чтобы реакция началась, обычно достаточно соединить компоненты. В сущности, это вид термохимической реакции, только протекает она при температуре в сотни и тысячи градусов. Поэтому используемое оборудование гораздо сложнее и дороже.

fb.ru

Аккумулирование электрической энергии —

Дата публикации: 26 марта 2016

Типы аккумуляторов электрической энергии

Аккумуляторы являются неотъемлемой частью любой системы, ориентированной на получение альтернативных видов энергии.

Наибольшее распространение к настоящему времени получили электрохимические аккумуляторы электрической энергии, в которых преобразование химической энергии в электрическую при разряде аккумулятора происходит посредством химической реакции. При зарядке аккумулятора химическая реакция протекает в обратном направлении.

Кроме электрохимических аккумуляторов электроэнергию можно запасать в конденсаторах и соленоидах (катушках индуктивности).

В заряженном конденсаторе энергия хранится в виде энергии электрического поля диэлектрика. Ввиду того что удельная энергия, запасаемая конденсатором, очень невелика (практически от 10 до 400 Дж/кг), а длительность возможного хранения энергии вследствие имеющейся ее утечки небольшая, этот тип аккумулятора энергии применяется только в тех случаях, когда надо отдать электроэнергию потребителю за очень короткое время при кратком сроке ее хранения.

В соленоиде электрическая энергия аккумулируется в виде энергии магнитного поля. Поэтому этот тип накопителя именуется электромагнитным. Но время выдачи энергии электромагнитными аккумуляторами обычно измеряется даже не секундами, а долями секунды.

Для зарядки аккумулятора нужен внешний источник энергии, причем в процессе зарядки могут возникать потери энергии. После зарядки аккумулятор может оставаться в состоянии готовности (в заряженном состоянии), но и в этом состоянии часть энергии может теряться из-за произвольного рассеяния, утечки, саморазряда или других подобных явлений. При отдаче энергии из аккумулятора также могут возникать ее потери; кроме того, иногда невозможно получить обратно всю аккумулированную энергию. Некоторые аккумуляторы устроены так, что в них должна оставаться некоторая остаточная энергия.

Характеристики аккумуляторов

Основной характеристикой аккумулятора является его электрическая ёмкость. Единицей измерения этой ёмкости является ампер-час (А·ч) — внесистемная единица измерения электрического заряда.

Исходя из физического смысла, 1 ампер-час — это электрический заряд, который проходит через поперечное сечение проводника в течение одного часа при наличии в нём тока силой в 1 ампер. Теоретически заряженный аккумулятор с заявленной ёмкостью в 1 А·ч способен обеспечить силу тока 1 ампер в течение одного часа (или, например, 0,1 А в течение 10 часов, или 10 А в течение 0,1 часа).

На практике же емкость аккумулятора рассчитывают исходя из 20-часового цикла разряда до конечного напряжения, которое для автомобильных аккумуляторов составляет 10,8 В. Например, надпись на маркировке аккумулятора «55 А·ч» означает, что он способен выдавать ток 2,75 ампер на протяжении 20 часов, и при этом напряжение на клеммах не опустится ниже 10,8 В.

Слишком большой ток разряда аккумулятора приводит к менее эффективной отдаче электроэнергии, что нелинейно уменьшает время его работы с таким током и может приводить к перегреву.

Производители аккумуляторов иногда в качестве емкости указывают в технических характеристиках запасаемую энергию в Вт·ч. Поскольку 1 Вт = 1 А * 1 В, то если запасаемая энергия равна 720 Вт·ч мы можем поделить это значение на величину напряжения (скажем 12 В) и получим емкость в ампер-часах (в нашем примере 720 Вт·ч / 12 В = 60 А·ч.).

Свинцово-кислотные аккумуляторы

В заряженном состоянии анод (отрицательный электрод) такого аккумулятора состоит из свинца, а катод (положительный электрод) — из двуокиси свинца РbO2 . Оба электрода изготовлены пористыми, чтобы площадь их соприкосновения с электролитом была как можно больше. Конструктивное исполнение электродов зависит от назначения и емкости аккумулятора и может быть весьма разнообразным.

Химические реакции при заряде и разряде аккумулятора представляются формулой

РbO2 + Рb + 2Н2SO4 <—> 2РbSO4 + Н2О

Для заряда аккумулятора теоретически требуется удельная энергия 167 Вт/кг. Этим же числом выражается, следовательно, и теоретический его предел удельной аккумулирующей способности. Однако фактическая аккумулирующая способность намного меньше, вследствие чего из аккумулятора при разряде обычно получается электрическая энергия приблизительно 30 Вт/кг. Факторы, обусловливающие снижение аккумулирующей способности, наглядно представлены на рис. 1. Кпд аккумулятора (отношение энергии, получаемой при разряде, к энергии, расходуемой при заряде) обычно находится в пределах от 70 % до 80 %.

Аккумулирующая способностьРис.1. Теоретическая и фактическая удельная аккумулирующая способность свинцового аккумулятора 

Различными специальными мерами (повышением концентрации кислоты до 39 %, использованием пластмассовых конструкционных частей и медных соединительных частей и др.) в последнее время удалось повысить удельную аккумулирующую способность до 40 Вт•ч/кг и даже немногим выше.

Из вышеприведенных данных вытекает, что удельная аккумулирующая способность свинцового аккумулятора (а также, как будет показано в дальнейшем, и других типов аккумуляторов) существенно ниже, чем первичных гальванических элементов. Однако этот недостаток обычно компенсируется

  • возможностью многократного заряда и, как результат, приблизительно десятикратным снижением стоимости получаемой из аккумулятора электроэнергии,
  • возможностью составлять аккумуляторные батареи с очень большой энергоемкостью (при необходимости, например, до 100 МВт•ч).

Каждый цикл заряда-разряда сопровождается некоторыми необратимыми процессами на электродах, в том числе медленным накапливанием невосстанавливающегося сернокислого свинца в массе электродов. По этой причине через определенное число (обычно приблизительно 1000) циклов аккумулятор теряет способность нормально заряжаться. Это может случиться и при длительном неиспользовании аккумулятора, так как электрохимический разрядный процесс (медленный саморазряд) протекает в аккумуляторе и тогда, когда он не соединен с внешней электрической цепью. Свинцовый аккумулятор теряет из-за саморазряда обычно от 0,5 % до 1 % своего заряда в сутки. Для компенсации этого процесса в электроустановках используется постоянный подзаряд при достаточно стабильном напряжении (в зависимости от типа аккумулятора, при напряжении от 2,15 В до 2,20 В).

Другим необратимым процессом является электролиз воды («закипание» аккумулятора), возникающий в конце зарядного процесса. Потерю воды легко компенсировать путем доливки, но выделяющийся водород может вместе с воздухом привести к образованию взрывоопасной смеси в аккумуляторном помещении или отсеке. Во избежание опасности взрыва должна предусматриваться соответствующая надежная вентиляция.

Другие типы аккумуляторов

В последние 20 лет появились герметически закрытые свинцовые аккумуляторы, в которых применяется не жидкий, а желеобразный электролит. Такие аккумуляторы могут устанавливаться в любом положении, а кроме того, учитывая, что во время заряда они не выделяют водорода, могут размещаться в любых помещениях.

Кроме свинцовых выпускается более 50 видов аккумуляторов, основанных на различных электрохимических системах. В энергоустановках довольно часто находят применение щелочные (с электролитом в виде раствора гидроокиси калия КОН) никель-железные и никель-кадмиевые аккумуляторы, ЭДС которых находится в пределах от 1,35 В до 1,45 В, а удельная аккумулирующая способность — в пределах от 15 Вт•ч/кг до 45 Вт•ч/кг. Они менее чувствительны к колебаниям температуры окружающей среды и менее требовательны к условиям эксплуатации. Они обладают также большим сроком службы (обычно от 1000 до 4000 циклов заряда-разряда), но их напряжение изменяется во время разряда в более широких пределах, чем у свинцовых аккумуляторов, и кпд у них несколько ниже (от 50 % до 70 %).

В литий-ионных аккумуляторах анод состоит из углерода, содержащего в заряженном состоянии карбид лития LiхC6, а катод — из окиси лития и кобальта Li1-хCoO2. В качестве электролита применяются твердые соли лития (LiPF6, LiBF4, LiClO4 или другие), растворенные в жидком органическом растворителе (например, в эфире). К электролиту обычно добавляют сгуститель (например, кремнийорганические соединения), благодаря чему он приобретает желеобразный вид. Электрохимические реакции при разряде и заряде заключаются в переходе ионов лития с одного электрода на другой и протекают по формуле

LixC6 + Li1-xCoO2 <—> C6 + LiCoO2

По внешней форме элементы литий-ионных аккумуляторов могут быть плоскими (похожими на четырехугольные пластины) или цилиндрическими (с рулонными электродами). Выпускаются также аккумуляторы, в которых применяются другие материалы анода и катода. Одним из важных направлений развития является разработка быстрозаряжаемых аккумуляторов.

Существует много других видов аккумуляторов (всего около 100). Например, в системах электроснабжения самолетов, где масса оборудования должна быть как можно меньше, находят применение серебряно-цинковые аккумуляторы с удельной аккумулирующей способностью, в среднем, 100 Вт•ч/кг. Наивысшую ЭДС (6,1 В) и наибольшую удельную аккумулирующую способность (6270 Вт•ч/кг) имеют фторо-литиевые аккумуляторы, серийного производства которых, однако, еще нет.

Первичные гальванические элементы хорошо подходят для работы в длительном режиме, а аккумуляторы могут использоваться как для длительной работы, так и для покрытия кратковременных и толчковых нагрузок. Конденсаторы и катушки индуктивности используются, главным образом, для покрытия импульсных нагрузок и для выравнивания мощности при быстрых изменениях нагрузок. Для выравнивания мощности, отдаваемой в энергосистему ветряными и солнечными электростанциями, могут применяться комбинации аккумуляторов с ультраконденсаторами.

Область применения некоторых аккумулирующих устройств по длительности нагрузки и по отдаваемой мощности характеризует рис. 2.

akk-2

Рис.2.

altenergiya.ru

Аккумулятор энергии

Познавательно

 

накопители энергии

Рекуператоры (устройства по "возвращению" энергии в промышленную электросеть) помогут адаптации к современным условиям использования ветроэнергетики и малых гидроэлектростанций. Эти виды энергии сейчас называют "нетрадиционными", хотя это действительно традиционные, служившие людям с незапамятных времен в виде парусов, поилок для скота, мельниц и т.д.

Но как быть, когда в сети вовсе нет тока? При увеличении количества малых электростанций (а такая тенденция уже давно наметилась во всем мире) они смогут обойтись без основной электростанции, а пока приходится выключать "захлебнувшийся" рекуператор. Можно, конечно, заряжать дармовой энергией аккумуляторы, но плотность хранения энергии в электрохимических аккумуляторах мала: у свинцово-кислотных - 64 кДж/кг, у никель-кадмиевых 110 кДж/кг, у топливных элементах (при различных сроках разрядки) от 15 до 150 кДж/кг. Есть еще "горячие" аккумуляторы с расплавленным электролитом (300...600°С), например, сернонатриевые, у которых плотность составляет 800 кДж/кг, но КПД их мал.

Может обратиться к маховику? Сплошной диск равной прочности имеет плотность 120 кДж/кг, супермаховик из ленты - 150 кДж/кг, супермаховик из специального волокна - 650 кДж/кг [1].

Еще в 1791 г. русский механик И.П.Кулибин построил двухместный экипаж, движимый расположенным на запятках слугой. В этом праавтомобиле были заложены элементы, которые начинают использовать в транспорте только сейчас: маховичный аккумулятор и рекуперативный тормоз [2]. Маховик известен с незапамятных времен. Сегодня маховики помещают в вакуумную камеру для уменьшения потерь на трение о воздух. Вместо подшипников применяют магнитные опоры.

маховичный аккумулятор

Рис. 1 «Самокатка» И. П. Кулибина – прекрасный пример удачногоиспользования маховика на транспорте

Подняв скорость маховика вдвое, мы повышаем его кинетическую энергию вчетверо. Вот почему главное направление развития маховичных аккумуляторов - повышение числа оборотов, а значит, и прочности. Если изготовить маховик из очень прочного кварцевого волокна, то удастся повысить плотность энергии до 5000 кДж/кг. А если использовать углеродное волокно со структурой алмаза, то плотность повысится до 15000 кДж/кг!

Наряду с плотностью энергии аккумуляторы характеризуются плотностью отдаваемой мощности. И тут маховику равных нет. Конечно, отбор мощности от современных маховиков возможен только электрическим путем, никакая механика не в состоянии выдержать такую плотность энергии.

Тем не менее у электрохимических и маховичных аккумуляторов есть достойный конкурент - тепловой аккумулятор, в котором энергия хранится в сильно нагретых веществах, находящихся на грани перехода из одного своего состояния в другое. Такие аккумуляторы запасают громадное количество энергии, значительно больше, чем любой другой тип аккумулятора. Именно такими типами аккумуляторов являются наше Солнце, плазма Земли, шаровые молнии и др. Плотность хранения энергии в них максимальна.

Еще в 1995 г. автор этих строк пытался изготовить камеру для "бездонного" аккумулирования. Устройство ее простое. Прочная и герметичная камера состоит из двух изолированных друг от друга электродов. Камера заполняется водой. При напряжении 2 В вся вода разлагается на водород и кислород. Затем предполагалось поджечь смесь высоким напряжением. Первая конструкция не выдержала высокого давления, и газы вырвались из нее наружу. Своими исследованиями мне удалось "заразить" выпускника Львовского университета Р. Стасива. Его камера с учетом моего опыта была изготовлена куда прочнее (см. рисунок 2). Вместо пластмассовых прокладок применена эпоксидная смола, в конструкции камеры использовалась инструментальная сталь. Прокладка крышки была изготовлена из тонкой медной фольги. Объем камеры сильно уменьшен, но тогда этому не придали значения (у шаровых молний есть критический диаметр, достигнув которого они взрываются).

Испытания Ростислав проводил сам, что также недопустимо. Ему удалось полностью разложить в камере объемом менее наперстка всю воду. Омметр, подключенный к камере, показывал "обрыв", что означало полное отсутствие воды.

Следующий этап - поджигание смеси с помощью высоковольтного трансформатора, применяемого в больших котельных установках. При этой процедуре вро

Рис. 2

де ничего не произошло, и можно было приступать к зарядке аккумулятора. Теперь это уже был гибрид: и горячего электрохимического аккумулятора, и маховика (вещество в камере, точнее, фронт диссоциации, по идее, должен был вращаться со скоростью до 365000 об/мин), и теплового аккумулятора (внутри камеры находилась плазма). Но тут исследователь взял в руку камеру и зачем-то потряс ее... Страшный взрыв всколыхнул всю округу, из соседних домов прибежали испуганные люди. Шесть дней контузии и израненная рука - вот результат испытаний для исследователя.

Конечно, подобный эксперимент с каким-либо другим энергетическим зарядом такой мощности вряд ли закончился бы одной "акустикой". Причина сравнительно благополучного исхода аварии в свойстве "гремучего газа" - стехиометрической смеси водорода и кислорода. При ее взрыве происходит наложение обычного теплового взрыва и вакуумного.

Эксперимент окончился не так, как хотелось (неудачных экспериментов не бывает, все они - "прикосновение к Истине"), и мы собираемся его продолжить. Ведь расщепление воды на водород и кислород сулит 141,88 кДж/кг, а один только водород, если расщепить его на атомы, дает уже 213,3 кДж/кг. А что же будет, если расщепить атом? В [3] есть слова: "В принципе работоспособность электричества огромна, гораздо больше, чем работоспособность гравитации".

Ю. Бородатый

Литература

1.Гулиа Н. Транспорт, уходящий в завтра//Моделист-Конструктор. -1980. -№1. -С 15-17.

2. Гулиа Н. Конструктору в досье: на зав трашней улице//Моделист-конструктор. -1982. -№1. -С. 16.

3.Сворень Р.А. Электроника шаг за шагом: практическая энциклопедия юного радиолюбителя. М.: Детская литература, 1986.

allpowr.su

Аккумуляторы: энергия движения вперед

Современное развитие технологий тесно связано с совершенствованием аккумуляторов. Будь то электромобили, новые портативные устройства или, что известно в основном специалистам, системы бесперебойного питания. В то же время, наблюдается один любопытный парадокс: электромобили ставят новые рекорды, меняются стандарты мобильной связи, а мы по-прежнему, как и 15 лет тому назад, пользуемся свинцово-кислотными, никель-кадмиевыми, никель-металгидридными и литий-ионными аккумуляторами. Тем не менее, разработаны новые типы аккумуляторов, которые в ближайшее время придут на смену привычным. Некоторые из них уже серийно производятся.

Основной проблемой при эксплуатации аккумуляторов является неполная обратимость химических процессов, в результате которых в устройстве накапливаются побочные продукты. В результате, имеет место так называемый «эффект памяти», когда при неполной разрядке аккумулятора емкость последующего заряда снижается. Особенно этому подвержены никель-кадмиевые аккумуляторы. «Эффект памяти» присутствует, пусть и в меньшей степени, в никель-металл-гидридных, а также, как показывают современные исследования, и в литий-ионных аккумуляторах. Вот почему для применений, где аккумулятор регулярно подзаряжается, не полностью разряжаясь перед этим (альтернативная энергетика, источники бесперебойного питания), до сих пор используются свинцово-кислотные аккумуляторы.

Другой проблемой, почему свинцово-кислотные аккумуляторы нельзя так просто заменить на никель-металгидридные или литий-ионные, является напряжение одного элемента. Никель-кадмиевые и никель-металгидридные аккумуляторы дают напряжение 1,2 В, для получения напряжения 12 В, которое нужно для огромного количества применений, требуется 10 элементов. В итоге батарея получается громоздкая и ненадежная. Литий-ионный аккумулятор дает напряжение 3,6 В, если соединить последовательно 3 элемента, то получится 10,8 В, а если 4, то 14,4 В. И то, и другое напряжение далеко от требуемых 12 В.

Никель-натрий-хлоридные

Современной заменой свинцово-кислотных могут стать никель-натрий- хлоридные (никель-солевые) аккумуляторы. Опытные образцы данного типа аккумуляторов были созданы еще в 60-х годах XX века, но серийное производство было начато только в 1998 году. В этих аккумуляторах катод выполнен из металлического натрия, электролитом является расплавленный хлорид натрия (то есть поваренная соль), анодом — проволока из никеля. Электролит находится в керамическом стакане-сепараторе из корунда (Бета-глинозем). При заряде хлорид натрия вступает в реакцию с никелем, образуя хлорид-никеля, в результате высвобождается два иона натрия. Проходя через керамический сепаратор, ионы натрия аккумулируются на внешней его стенке.

При разряде аккумулятора электроэнергия вырабатывается за счет восстановления хлорида натрия и никеля. В процессе заряда и разряда не образуются какие-либо побочные продукты, эти процессы полностью обратимы. Никель-натрий-хлоридные аккумуляторы имеют ЭДС около 2,6 В. Соединив последовательно 5 элементов, можно получить батарею напряжением 13 В, что всего лишь на 3% превосходит номинальное напряжение вмнцово-кислотного аккумулятора без нагрузки (12,6 В). Это значительно упрощает процесс переходы на новые аккумуляторы.

Недостатком никель-натрий-хлоридных аккумуляторов является то, что для нормальной работы внутри их должна поддерживаться высокая температура (около +250°С). Причем количество циклов нагрева-охлаждения ограничено. Типичный никель-солевой аккумулятор на момент написания статьи выдерживал всего 50 циклов нагрева-охлаждения. Из- за этого применение аккумуляторов данного типа возможно лишь в установках, регулярно получающих электроэнергию, что позволяет постоянно поддерживать высокую температуру. Это могут быть системы аккумулирования электроэнергии на солнечных электростанциях или же системы бесперебойного электропитания промышленного масштаба.

Собственная удельная энергоемкость никель-натрий-хлоридных аккумуляторов составляет 140 В·ч/кг. Но из-за необходимости термоизоляции аккумуляторной батареи, а также размещение непосредственно в ней некоторых электронных управляющих узлов реальная энергоемкость данного типа аккумуляторов составляет 90 Вт·ч/кг. Но это все равно в 3 раза выше, чем у свинцовокислотных аккумуляторов. Количество циклов заряда-разряда при уменьшении емкости на уровне не менее 80%, достигает 3000. Если предположить, что аккумулятор установлен на солнечной электростанции, накапливая энергию днем и отдавая ее в сеть ночью, то он проработает более 8 лет. Для сравнения, емкость литий-ионного аккумулятора уменьшается до 80% от первоначального значения примерно за 600 циклов заряда-разряда.

Серно-натриевые

В аккумуляторах этого типа анод выполнен из натрия, электролитом является алюминат натрия, катодом — элементарная сера в смеси с графитом. Этот тип аккумуляторов был изобретен еще в начале 70-х годов XX века. Большой вклад в разработку серно-натриевых аккумуляторов внесли советские ученые, наряду с исследователями из Великобритании и Франции. В серно-натриевых аккумуляторах электроэнергия вырабатывается за счет взаимодействия натрия с серой, в результате чего образуется полисульфид натрия. При зарядке происходит реакция восстановления натрия.

Существует несколько вариантов конструкции серно-натриевых аккумуляторов. Общей проблемой, не решенной полностью до сих пор, является разрушение электролита при попадании в его поры жидкого натрия. В настоящее время ведутся работы по уменьшению размера пор в твердом электролите, что, как ожидается, позволить снизить данный негативный эффект.

ЭДС одного элемента серно-натриевого аккумулятора равно 2,1 В, то есть точно такое же, как и у свинцово-кислотного аккумулятора. Главное преимущество серно-натриевых аккумуляторов заключается в исключительно высокой удельной емкости. У реальных образцов этот показатель достигает 350 Вт·ч/кг, что выше, чем у литий-ионных аккумуляторов. Теоретический же предел составляет 795 Вт·ч/кг. Поэтому серно-натриевые аккумуляторы считают перспективным источником тока для электромобилей.

В то же время, серно-натриевым аккумуляторам свойственен тот же недостаток, что и никель-соляным: необходимость в поддержании высокой температуры. Причем ситуация с этим у серно-натриевых аккумуляторов еще хуже — требуется температура не менее 300°С. Здесь уже всерьез встают вопросы пожарной безопасности. Поэтому серно-натриевые аккумуляторы пока не нашли широкого применения и выпускаются лишь небольшими партиями. Для источников бесперебойного питания и альтернативной энергетики удельная емкость не так важна, как пожарная безопасность, для электромобилей же серно-натриевые аккумуляторы недостаточно доработаны. Сернонатриевые аккумуляторы выпускаются пока только небольшими партиями и их использование до сих пор носит экспериментальных характер.

Литий-железо-фосфатные

Данный тип аккумулятора является, на самом деле, разновидностью литий-ионного и работает на аналогичном принципе. Отличие заключается в катоде из LiFeP04 вместо кобальтата лития или литиево-марганцевой шпинели в традиционных литий-ионных аккумуляторов. Тем не менее, замена материала катода привела к настолько существенному изменению параметров, что литий-железо-фосфатные аккумуляторы часто рассматривают как отдельную категорию источников питания. Замена электродов позволила активизировать литиево-ионный обмен между электродами, что и стало причиной значительного улучшения характеристик.

Литий-железо-фосфатные аккумуляторы были изобретены в 1996 г. Массовое производство таких аккумуляторов было развернуто в 2008 г.

По сравнению с литий-ионными, да и другими аккумуляторами, литий-железо-фосфатные обладают практически рекордной долговечностью. Известны аккумуляторы этой системы, допускающие 7000 циклов заряда-разряда при снижении емкости до 80% от первоначального значения. Также, в отличие от обычных литий-ионных, данные аккумуляторы очень медленно деградируют при хранении, что позволяет хранить их до 15 лет. Литий-железо-фосфатные аккумуляторы можно зарядить примерно за 15 минут, что обусловило их применение в электромобилях. Этому даже не помешало то обстоятельство, что удельная емкость их ниже, чем у обычных литий-ионных аккумуляторов — около 100 Вт·ч/кг (у обычных литий-ионных аккумуляторов она может достигать 240 Вт·ч/кг). В силу данной причины, литий-железо-фосфатные аккумуляторы пока не получила распространения для питания портативных устройств.

Литий-железо-фосфатные аккумуляторы дают напряжение 3,2 В. Соединив 4 элемента последовательно, получаем напряжение батареи 12,8 В, что обеспечивает совместимость с уже существующей аппаратурой, питающейся от свинцово-кислотных аккумуляторов. Интересной особенностью является то обстоятельство, что большую часть времени работы аккумулятор поддерживает на выводах стабильное напряжение 3,2 В. В ряде случаев это позволяет обойтись без дополнительных стабилизаторов напряжения, усложняющих конструкцию и снижающих КПД устройства.

Литий-железо-фосфатные аккумуляторы могут в перспективе найти свое применение в альтернативной энергетике и источниках бесперебойного питания.

Перспективные типы аккумуляторов

Тип аккумулятора

Никель-натрий-хлоридный

Серно-натриевый

Литий-железо- фосфатный

Литий-серный

Напряжение одного элемента, В

2,6

2,1

3,2

2,1

Достигнутое значение удельной емкости, Вт·ч/кг

90

350

100

400

Максимальное количество циклов заряд-разряд

3000

Н/д

7000

100 (лабораторный образец - 1500)

Преимущества

Полное отсутствие «эффекта памяти»

Высокая удельная емкость

Большое количество циклов заряд-разряд, быстрая зарядка

Высокая удельная емкость, высокая безопасность

Недостатки

Необходимость поддержания высокой температуры, относительно низкая удельная емкость

Необходимость поддержания высокой температуры

Относительно низкая удельная емкость

Малое количество циклов заряд-разряд

Применения

Альтернативная энергетика, ИБП

Альтернативная энергетика, ИБП, транспортные средства

Альтернативная энергетика, ИБП, транспортные средства

Транспортные средства, мобильные устройства

Статус производства на начало 2015 г.

Серийно производятся

Экспериментальные прототипы

Серийно производятся

Опытные партии

Какие типы аккумуляторов может заменить

Свинцово-кислотные

Свинцово-кислотные, литий-ионные

Литий-ионные, свинцово-кислотные, никель-кадмиевые, никель-металгидридные

Литий-ионные, никель-кадмиевые, никель-металгид ридные

Литий-серные

Перспективный тип аккумуляторов, создан в 2004 году. Является дальнейшим развитием идей, заложенных в литий-ионных аккумуляторах. Опять-таки, параметры повышаются за счет применения другой конструкции катода. В литий-серных аккумуляторах он представляет собой жидкость, содержащую серу, что позволило увеличить максимальную плотность тока. При зарядке сера и литий превращаются в сульфид лития, при разрядке происходит обратный процесс разложения сульфата на серу и литий. Литий-серные аккумуляторы дают напряжение около 2,1 В, такое же, как у свинцово-кислотных аккумуляторов.

Существующие образцы литий-серных аккумуляторов имеют удельную емкость до 400 Вт·ч/кг, теоретически же удельная емкость таких аккумуляторов может достигать 2600 Вт·ч/кг. Аккумулятор полностью безопасен, вероятность взрыва или возгорания при эксплуатации практически отсутствует. Благодаря этому аккумулятор можно сделать очень простым и легким по конструкции благодаря отсутствию систем защиты. Неудивительно, что именно литий-серные аккумуляторы используются в экспериментальных самолетах с питанием от солнечных батарей.

Основная проблема массового применения литий-серных аккумуляторов связана с тем, что при зарядке-разрядке объем электродов изменяется на 76%. Это приводит к механическим деформациям в аккумуляторе, из-за чего количество циклов заряда-разряда не превышает 100. Для экспериментальных полетов это вполне нормально, но, скажем, для электромобиля является непозволительной роскошью. Кроме этого, в одной партии литий-серных аккумуляторов наблюдается большой разброс емкостей.

В 2013 году был создан экспериментальный прототип литий-серного аккумулятора с катодом из композитного материала, включающего в себя графен и серу. Благодаря этому удалось увеличить количество циклов заряд-разряд до 1500. Но пока технология недостаточно проработана, чтобы такие аккумуляторы выпускались серийно.

Вывод

Наиболее вероятными кандидатами на замену традиционных типов аккумуляторов сейчас могут считаться литий-железо-фосфатные аккумуляторы. Они могут применяться в таких сферах, как альтернативная энергетика, источники бесперебойного питания, транспортные средства. Никель-натрий-хлоридные аккумуляторы в ближайшее время останутся «нишевым» решением для крупных солнечныхмэлектростанций, а также для обеспечения бесперебойного питаниямобъектов с большим энергопотреблением. Литий-серные аккумуляторы перспективны для транспортных средств, так и для мобильных устройств. Но для их широкого использования потребуется увеличить количество циклов заряд-разряд и уменьшить разброс параметров при серийном производстве.

Алексей ВАСИЛЬЕВ

 

Антон ЖУКОВ,системный инженерподразделения ITBusiness компанииSchneider Electric

Мнение Эксперта

Какие типы аккумуляторов наиболее часто используются сейчас в источниках бесперебойного питания (ИБП)?

Согласно международным стандартам, в ЦОДах необходимо поддерживать параметры окружающей среды в допустимых пределах (это температурный режим, влажность, вентиляция, освещенность и др.), поэтому климатические условия в помещениях заранее определены. Время необходимой энергетической поддержки — от 10-15 минут до часа (обычно этого достаточно). В большинстве случаев под батарейные массивы не выделяют отдельные помещения, и это приводит к определенным требованиям в части безопасности обслуживающего персонала и окружающей среды в целом. Также необходимо использовать наиболее дешевые батареи.

Из широко используемых с ИБП типов батарей (свинцово-кислотные, никель-кадмиевые, литий-ионные, никель-металл-гидридные) для описанных выше требований подходят именно герметичные свинцово-кислотные батареи с регулируемыми клапанами (VRLA), выполненные с гелевыми ячейками или, в отдельных случаях, — по технологии AGM.

Однако, в отдельных случаях, когда объекты имеют маленькие помещения, «плохую» питающую сеть, большие температурные перепады или, скажем, трудную географическую доступность, целесообразнее рассматривать другие варианты батарей.

Что в перспективе будет использоваться вместо свинцово-кислотных аккумуляторов в ИБП?

В настоящее время основной акцент делается на литий-ионные батареи, т.к. в сравнении со свинцово-кислотными эти батареи быстрее заряжаются, обладают большей емкостью, нормально функционируют в широких температурных диапазонах.

Какие новые типы аккумуляторов вы считаете наиболее перспективными для использования в ИБП в более отдаленном будущем?

Особое место в батарейной отрасли в современном мире занимают батареи на основе натрия — натрий-никель-хлоридные, натрий-серные, — работающие в широком температурном диапазоне и выдерживающие до 1500 циклов перезарядки; литий-полимерные батареи, за счет своей легкости, используемые в мобильных портативных устройствах и в быстро наращиваемых батарейных массивах. Эти три типа батарей, по моему мнению, в скором будущем, возможно, будут адаптировать под нужды мобильных контейнерных решений. Разумеется, только когда технология их изготовления по своей цене станет более конкурентной в сравнении, хотя бы, с литий-ионными.

market.elec.ru

Получить энергию – важно, но ещё важнее – сохранить! —

Дата публикации: 4 июня 2014

Почему альтернативные источники занимают пока столь скромное место в народном хозяйстве мировых стран? Даже тех стран, у которых нет традиционных полезных ископаемых, пригодных для выработки энергии?

Главнейшая причина, вернее, несколько – несовершенство батарей, сохраняющих энергию. Долго заряжаются, имеют предел зарядки, теряют значительную часть при длительном хранении – вот главные недостатки аккумуляторов. Да плюс ко всему – дорогие. Здесь камень преткновения великой и спасительной поступи природных возобновляемых источников энергии!

В данной серии заметок пойдёт речь об усилиях учёных-изобретателей по поиску оптимальных вариантов аккумуляторов для альтернативных источников энергии. Ведь все виды природных источников отличаются крайним непостоянством, эпизодичностью, а электроэнергия не терпит скачков. Поэтому несовершенство аккумуляторов, помноженное на непостоянство ветра, солнца и воды, откуда мы получаем энергию, сдерживают массовую поступь по планете возобновляемых природных источников энергии.

Итак, аккумуляторы. Где взять такие приборы, которые могут быстро заряжаться и не знать предела зарядки, долго сохранять энергию без потерь, затем отдавать её по мере потребления столько, сколько потребуется времени и напряжения, чтобы не прерывать процесс производства или освещения объектов?

Как вы сейчас убедитесь, поиски идут, но от восторга в воздух чепчики бросать пока рановато.

Хоть и дёшево, но не сердито

Натриево-ионный аккумуляторГруппа китайских изобретателей вместе с американскими коллегами пришли к новой технологии изготовления аккумуляторов, предназначенных для альтернативных источников энергии. Они создали гибрид литиевых и натриево-серных агрегатов и назвали его натриево-ионным. Он предназначен обеспечивать потребителей электричеством в часы полного затишья ветра и при пасмурной погоде, когда перестают действовать солнечные батареи.

Главное его достоинство – дешевизна! И достигнуто это за счёт использования в его работе обыкновенной поваренной соли. Но учёных в ходе исследований подстерегала другая проблема в связи с созданием электродов. Немало помучившись, они создали специально для этого агрегата оксидно-марганцевые провода, по которым передвигаются ионы натрия.

Получился натриево-ионный долговечный прибор. При испытании его 100 раз заряжали и разряжали и при этом он утратил лишь 10% своей ёмкости. Кстати, объём мощности его довольно внушительный.

Всё бы хорошо, да вот незадача: чем интенсивнее ветер и чем больше за короткое время поступает на аккумулятор энергии, тем меньше он накапливает её впрок. Не успевает осваивать поступающую энергию. Проявляет некую «заторможенность». Учёные работают сейчас над устранением этой проблемы и уверены, что они на верном пути к совершенству искомого агрегата.

Аккумуляторная революция?

Поиск изобретателей продолжается. Проблема нешуточная: как накопить во время интенсивной работы ветрогенераторов и солнечных батарей столько энергии, чтобы её хватило на несколько часов полного безветрия и даже солнечного затмения. Эту роль должны выполнить аккумуляторы, которых до наших времён на свете не существовало. Задача с несколькими неизвестными.

Но просвет в поисках всё же наблюдается. Часто мы встречаем отрадную весть из разных уголков земного шара о некоторых находках по заданной тематике.

Профессор института технологии из Массачусетса Садвей обнародовал крупномасштабную систему сохранения энергии с помощью аккумулятора на жидком металле. В нём вместо электродов применяется расплав сурьмы и магния, а вместо электролита — сульфид натрия с растворенным магниевым сплавом.

Учёные-изобретатели под руководством Садвея задались целью создать такой аккумулятор, который бы побил все рекорды прежних своих собратьев по низкой цене, был предельно безопасен в эксплуатации, безотказен и неприхотлив в работе. Ставка сделана на изобретение такого агрегата, который бы мог эффективно действовать при довольно высоких температурных режимах. Ведь не секрет, что любому агрегату, требующему постоянное охлаждение, малейшие форс-мажорные обстоятельства могут грозить выходом из строя. Аккумулятору Садвея это не грозит.

В изделии вместо электродов применен трёхслойный расплавленный металл, разделенный жидким электролитом. Все слои разделены из-за разной плотности состава. Изобретатели уверены, что подобный аккумулятор имеет огромные преимущества перед своими традиционными предшественниками: долговечен, совершенно безразличен к большому числу зарядов-разрядов и может принимать на хранение и отдавать электроток во много раз больший, чем существующие агрегаты. По твёрдому убеждению авторов проекта, такая аккумуляторная батарея полностью удовлетворит потребность любого частного дома в электричестве.

Детище американских изобретателей обещает природным источникам энергии выйти на первый план в борьбе за место на планете среди традиционных углеводородистых ископаемых. С таким аккумулятором не страшны и любые природные куражи: непостоянство ветра, ненадёжность солнечного света. Он быстро накопит энергию, бесконечно долго и без потерь будет сохранять, будет выдавать её долгие часы во время безветрия и пасмурной погоды.

Обнадёживающая перспектива. Хоть и не аккумуляторная революция, но, можно сказать, накануне её. Испытания подходят к своему завершению.

Страховка в квадрате

Недостатки альтернативных источников энергии хоть известны давно, но не так-то просто от них избавиться. Основные из них: дороговизна, низкий КПД, полная зависимость от матушки-природы. Подует ветерок и выглянет солнышко – хорошо, всё заработало. Но надолго ли. То есть, природа всё время держит в своих своевольных руках судьбу потребителей. Как надёжно застраховаться от своеволия природы?

Первая страховка от зависимости – подключение к мощной установке ветрогенератора и солнечных батарей так называемого инвертора, который регулирует работу аккумулятора. Этот агрегат держит под контролем напряжение в сети. При снижении он подключает аккумулятор, который начинает дополнять недостаток напряжения. Как только ветер усилился и солнце стало ярче, инвертор переводит аккумулятор в режим накопления энергии.

Этот способ довольно затратный: надо иметь мощные установки ветрогенератора и солнечных батарей, которые способны обеспечивать дом энергией и одновременно заряжать аккумулятор. Зато он гарантирует эффективность применяемых альтернативных источников энергии.

Второй способ застраховать себя от капризов природы – установить для дома гибридную электростанцию, работающую от ветра, солнца, с подключением к ним в качестве запасного варианта генератора, работающего на двигателе внутреннего сгорания. Страховка тогда обеспечивается полная. Включается двигатель при полном безветрии и отсутствии солнечных лучей, а также при полной разрядке аккумулятора. То есть, генератор на двигателе внутреннего сгорания выполняет роль аварийного, запасного игрока в системе электроснабжения дома. Основные работяги – солнце и ветер.

Второй вариант страховки позволяет иметь менее мощные источники возобновляемой энергии, значит, более дешёвые. Но в любых случаях необходим надёжный, энергоёмкий, экономный аккумулятор, способный быстро заряжаться, не иметь предела зарядки, не терять энергию в процессе хранения и быть ко всему прочему недорогим. Задача с несколькими неизвестными, над решением которой учёные бьются уже несколько десятилетий.

Химическая лаборатория в коробке

Аккумулятор на хинонахА вот учёные Гарвардского университета создали принципиально новейший аккумулятор, основанный на использовании химической реакции органических соединений, заменивших металлические пластины. Такой технологический подход открывает возможности в ближайшее время создать дешёвый и эффективный аккумулятор. Изобретатели называют главную причину дешевизны – использование органических соединений, похожих на растительные. То есть, их можно получать из растений типа ревеня, или из сырцовой нефти.

Аккумулятор нового типа содержит два резервуара с растворами химических соединений. Причём, на водной основе, что полностью исключает пожароопасность агрегата. Оказывается, эти химические компоненты с успехом справляются с теми задачами, которые в старых типах батарей выполняли металлические платиновые катализаторы. Они-то в основном и увеличивали стоимость изделий.

Достоинства данной «химической лаборатории» довольно ощутимы. Они способны хранить большой объём электроэнергии и стоимость хранения одного киловатт/часа снижается с 700 до 27 долларов. Использование химических компонентов, так называемых хинонов, действительно открывает столбовую дорогу для массового изготовления аккумуляторов, о которых давно мечтает весь инженерный мир.

Один из разработчиков Майкл Азиз уверен, что используя такие аккумуляторы в ветровой и солнечной энергетике, можно намного снизить энергозависимость человека от капризов природы. Такие химические лаборатории в коробке позволят получать бесперебойное снабжение энергией даже в условиях длительного безветрия и в ночное время. Кажется, победная финишная ленточка близка.

В.Ильин

Видео про зарядные устройства для Солнечной Батареи, и аккумуляторы:

altenergiya.ru

12 домашних накопителей энергии, которые могут соперничать с Тесла …

В конце октября прошлого года Маск представил Tesla Powerwall 2.0, новое поколение своей системы аккумуляции энергии для дома. Батарея имеет улучшенный дизайн и характеристики, но самое главное, что Powerwall показывает общее видение энергетики будущего. Идея в том, чтобы эффективно совместить частные солнечные станции и аккумуляторы, и дать людям больше возможностей производить чистую энергию, быть энергонезависимыми, и экономить средства.аккумуляторы накопители энергии: Солнечная энергия, солнечные фермы, модули, панели, батареи Читайте также:Как сделать аккумулятор Tesla PowerWall из батарей от ноутбука (видео)Сколько солнечных панелей и аккумуляторов нужно для вашего домаSUN2WHEEL — самодостаточный солнечный гараж для электромобилей Интегрированные системы аккумуляции накапливают энергию, сгенерированную солнечными панелями, или заряжаются от сети, когда солнце не светит или потребление очень высокое. Они также обеспечивают владельца дома аварийным источником энергии для экстренных случаев. И хотя такие системы еще не проникли на рынки многих стран, компактность, гарантия, и отсутствие необходимости в обслуживании делают их очень перспективными.

Но Тесла — не единственная компания, которая предлагает свои системы аккумуляторов. Подобные решения уже есть у нескольких других производителей. Именно их мы и сравним здесь.

Что собой представляет Tesla Powerwall

Tesla Powerwall 2.0 — это блок литий-ионных батарей, который весит 122 кг, и монтируется на стене. Аккумуляторы производит компания Panasonic, тогда как Tesla производит все остальные компоненты. В будущем аккумуляторы для Powerwall будут производиться на собственных мощностях Tesla — Гигафабрике.Tesla Powerwall 2 накопитель энергии: Солнечная энергия, солнечные фермы, модули, панели, батареи Цена Tesla Powerwall 2.0 — около $ 5,500, включая инвертор. Она может хранить до 13,5 кВт * ч энергии. Установка является модульной, то есть при необходимости можно объединять до девяти аккумуляторов в мощную систему. По расчетам Tesla, монтаж будет стоить около $ 1,000, и доставки начнутся с января этого года.

11 альтернатив акумуляторам Tesla Powerwall
1. Аккумуляторы LG Chem RESU выглядят крупнейшим конкурентом Tesla Powerwall на сегодня. Хотя эта модель и не получает такого медиа внимания, но по характеристикам они очень похожи. Сейчас Chem RESU очень популярны на австралийском рынке, и осваивают рынки США и Европы.LG chem Resu накопители энергии: Солнечная энергия, солнечные фермы, модули, панели, батареи Аккумуляторы могут накопить до 6,5 кВт * ч энергии, стоят около $ 4,000, но инвертор вы можете приобрести отдельно. Цена также не включает монтаж.LG chem Resu накопители энергии 2: Солнечная энергия, солнечные фермы, модули, панели, батареи 2. Sunverge предлагает системы аккумуляторов, которые дадут вам от 6 до 23 кВт * ч. Блок весит до 170 кг, и должен устанавливаться сертифицированным специалистом Sunverge. Система комплектуется соответствующим приложением, которое мониторит потребление энергии, степень заряда от солнечных панелей. Цена системы колеблется от $ 8,000 до $ 20,000 в зависимости от емкости.Sunverge накопители энергии аккумулятор: Солнечная энергия, солнечные фермы, модули, панели, батареи 3. Компания ElectrIQ создает накопители энергии для дома в США, в нем хранится 10 киловатт-часов энергии и они будут доступны в конце года. Его розничная цена составляет $ 13 000 и включает в себя стоимость инвертора. Батарея должна быть установлена квалифицированным электриком.Electriq накопители энергии: Солнечная энергия, солнечные фермы, модули, панели, батареи 4. Решение от Panasоnic даст вам 8 кВт * ч электроэнергии. Прибор доступен в Австралии, но планируется выход и на рынок Европы. Известно, что Panasonic поставляет аккумуляторы для всей продукции Tesla.Panasonic накопители энергии : Солнечная энергия, солнечные фермы, модули, панели, батареи 5. Nissan предлагает системы аккумуляции под брендом XStorage, которые сохраняют 4,2 кВт * ч энергии. Заказы начали приниматься в сентябре прошлого года, но модель пока доступна только в Европе. Стоимость системы $ 4,500, включая стоимость монтажа. Nissan позиционирует себя как экологически ответственный производитель, используя бывшие в употреблении аккумуляторы в своих продуктах.nissan xstorage: Солнечная энергия, солнечные фермы, модули, панели, батареи 6. Аккумуляторы от Mercedes-Benz пока продаются в Германии и Австралии. Каждый накопитель сохраняет 2,5 кВт * ч энергии, но их можно сочетать в блоки до 20 кВт * ч. Инвертор не входит в стоимость оборудования. Компания оценивает свою систему от $ 9,000 до $ 10,000. Владелец может мониторить заряд аккумуляторов с помощью специального мобильного приложения.Mercedes Benz накопители энергии: Солнечная энергия, солнечные фермы, модули, панели, батареиMercedes Benz накопители энергии 2: Солнечная энергия, солнечные фермы, модули, панели, батареи 7. Стартап Orison предлагает 18 килограмовую батарею на дому. Это значительно легче, чем Powerwall Тесла, но она имеет место лишь 2,2 кВт · ч энергии. Один Orison блок стоит $ 1600.Orison накопители энергии: Солнечная энергия, солнечные фермы, модули, панели, батареи Тем не менее, в отличие от батареи Тесла, вам не нужно обученного электрика, чтобы установить Orison. Продукт Orison приходит в виде плоской панели на стену или в виде напольной лампы, как показано ниже. Вы можете комбинировать панели или использовать несколько стоящих единиц для увеличения хранения.Orison накопители энергии 2: Солнечная энергия, солнечные фермы, модули, панели, батареи 8. Sonnen, немецкая компания, продает несколько вариантов домашних батарей-накопителей емкостью до 16 кВт · ч. Экологически компактная версия изображенная здесь имеет 4 кВтч энергии и стоит $ 5950. Она поставляется с инвертором.Sonnen batterie: Солнечная энергия, солнечные фермы, модули, панели, батареи Sonnen недавно привлекла $ 85 млн, чтобы расширить свою деятельность в Италии, Австралии, США и Великобритании. Компания продала более 15000 аккумуляторов и в настоящее время получает две трети своих доходов от своих немецких сделок. Но компания рассчитывает увеличить свою долю доходов за рубежом в следующем году.

9. SimpliPhi — компания производитель батарей для хранения энергии в домашних условиях, занимается этим примерно с 2002 года, но ее первоначальное название было LibertyPak. SimpliPhi предлагает несколько вариантов батарей, самая большая из которых хранит 3,4 кВт · ч энергии.SimpliPhi накопитель энергии: Солнечная энергия, солнечные фермы, модули, панели, батареи Батареи SimpliPhi могут быть объединены, чтобы образовать большой аккумулятор при необходимости. SimpliPhi публично не раскрывает информацию о ценах.SimpliPhi накопители: Солнечная энергия, солнечные фермы, модули, панели, батареи 10. BMW предлагает вариант батареи 6,4 кВт · ч на дому, но не дает цену за единицу. Как и Nissan, BMW принимает устойчивый подход, многократно используя батареи из своей серии i3 BMW. BMW планирует в конечном итоге предложить две единицы, которые могут хранить 22 кВт и 33 кВт · ч.BMW батареи для дома: Солнечная энергия, солнечные фермы, модули, панели, батареи 11. Serenis ESS — аккумуляторная система с украинскими корнями. Особенность системы — она включает несколько модулей — литий-ионную батарею, гибридный инвертор, высокотехнологичные контроллеры, систему онлайн-мониторинга и управления энергопотоками. Это позволяет ей работать с солнечными модулями и ветрогенераторами, продавать энергию по «зеленому» тарифу.Serenis ESS акумуляторы: Солнечная энергия, солнечные фермы, модули, панели, батареи Компания зарегистрирована в Венгрии, там же находятся и производственные мощности. Но ответственность за разработку и производственный процесс ведут украинские специалисты. 12. Powervault система накопления энергии на дому, которая доступна только в Великобритании. Все устройства поставляются с инвертором и состоят из самых мощных моделей аккумуляторов 6.6 кВт · ч энергии. Цены начинаются примерно в $3000. Как и аккумуляторы Tesla Powerwall накопитель Powervault должен быть установлен квалифицированным электриком.Powervault накопитель энергии аккумулятор: Солнечная энергия, солнечные фермы, модули, панели, батареи По материалам: BusinessInsider, EcoTown

rodovid.me

КБ «Энергия» / Продукты

В современных системах сохранения энергии- литий-титанатные АБ стоят особняком из- за своих уникальных качеств. Основные выпускаемые типы аккумуляторов LiFePO4- C Основные выпускаемые типы аккумуляторов LiMn2O4-C Мы держим руку на пульсе всех научных разработок и поддерживаем связь с основными производителями литий-ионных аккумуляторов. В нашей работе мы используем более 5 000 типов свинцово-кислотных аккумуляторов различного назначения ведущих мировых производителей В своих проектах мы используем никель-кадмиевые аккумуляторы производства ЗАИТ (Завод автономных источников тока г. Саратов). Технология фотовольтаики (солнечных модулей) существует уже более 50 лет. Давнее зарождение и бурное распространение в мире сделало ее сегодня очень востребованной. В своих проектах мы используем любые типы генераторов электроэнергии ведущих мировых производителей Наша компания является одним из ведущих предприятий в сфере инновационных разработок Ветроэнергетических установок (ВЭУ) различной мощности — от 5 до 1500 кВт. Тепловой насос — современный источник энергии, используемой для работы систем кондиционирования, отопления горячего водоснабжения. Электротехническая продукция, применяемая в наших системах и используемая в проектах может быть как серийно выпускаемая, так и производимая по техническим заданиям заказчика. Эргономичность, надежность, удобство эксплуатации, и совершенство изделия — для нас не пустые слова, а работа. В нашей работе мы сталкиваемся с задачами, которые не решить без профессионального участия архитекторов, дизайнеров. Осуществляем проектно-конструкторские работы по применению различных источников тока для промышленного, отраслевого и гражданского назначения. При выполнении данных работ мы используем человеческий потенциал высочайшей квалификации Для своих проектов мы используем как готовый программный сертифицированный продукт, так и создаем свой, применительно к выпускаемому оборудованию. За запатентованными разработками нашей компании мы осуществляем авторский надзор. Для выполнения Ваших заказов мы будем использовать те Продукты, которые наилучшим способом способствуют выполнению поставленному техническому заданию и бюджету

akb-energy.ru


Смотрите также