Концепция платы защиты BMS для литий-ионных АКБ. Аккумулятор security


Плата защиты Battery Monitoring System (BMS) для литий-ионных аккумуляторов

Хочу описать своё виденье о том какой должна быть плата защиты для литий ионных аккумуляторов различной химии и различной ёмкости. Сейчас конечно очень большой выбор различных BMS для li-ion аккумуляторов. Но простые BMS имеют жёсткие и слишком критические настройки срабатывания, от чего часто аккумуляторы выходят из строя (в основном разбухают от перезаряда). А продвинутые BMS имеющие множество компонентов и умеющие измерять даже внутреннее сопротивление ячеек, и через ПК и интернет настраиваться и обмениваться данными, стоят пока очень дорого, и из-за своей сложности они сложны в использовании для простых людей, а так-же их стоимость высока.

Думаю сейчас самая большая проблема в использовании литий-ионных аккумуляторов большой емкости это системы контроля и защиты таких аккумуляторов. Решения я повторюсь уже есть, но их можно пересчитать по пальцам, и они дорогие и не совсем универсальные, хотя в этом направлении прогресс не стоит на месте.

Само слово BMS означает Battery Monitoring System то-есть система мониторинга батареи, и этим коротким обозначением могут называться как простые аналоговые платы защиты, так и сложные микро-компьютерные системы мониторинга литий-ионных АКБ. Но как я уже написал выше - первые слишком примитивные и имеют слишком критические настройки срабатывания, а вторые слишком навороченные и дорогие. Но нет такой battery monitoring system, которая была-бы дешёвая и простая, но в тоже время имела возможность настройки под различные типы li-ion аккумуляторов, а так-же настройки отсечки заряд/разряд и настройки балансировки.

Фото плат защиты литий-ионных аккумуляторов

BMS для lifepo4

На этом фото простая и дешёвая плата защиты для lifepo4 аккумуляторов 4s 12v(4 ячейки). Такие BMS обычно устанавливаются внутри аккумуляторов, например в аккумуляторах электро-инструмента Платы защиты BMS могут быть различных размеров и на различное количество ячеек, то-есть отдельных аккумуляторов. Принцип работы таких плат очень простой, они отслеживают напряжение на каждой ячейке аккумулятора. И если на любой ячейке напряжение превысит порог срабатывания, то в BMS сработают силовые транзисторы и отключат аккумулятор от зарядного или потребителей. Так-же при установленном напряжении включается балансировка. Основной параметр, на который стоит обращать внимание это ток, на который рассчитана плата защиты.

Ниже на фото более дорогая и полнофункциональная BMS

BMS

Есть и такие полноценные BMS, которые настраиваются и отображают все данные аккумулятора на ПК. Так-же имеют и дополнительный lcd дисплей для отображения текущего состояния АКБ Так-же существуют и другие виды BMS, например ориентированные на работу в составе солнечной электростанции, н так-же они могут использоваться и в электро-транспорте.

BMS

Контроллер для литий-ионных аккумуляторов с полным контролем состояния ячеек и отображением состояния на ПК и lcd дисплее Ну и еще пример BMS созданной для электромобилей

BMS для электромобиля

Контроллер и мониторинг работы литий-ионных аккумуляторов для электромобилей

Достоинства и недостатки различных BMS

Дешёвые аналоговые платы защиты в основном предназначены для электротранспорта и электроинструмента, и имеют критические пороги защиты и балансировки, по-этому они не могут работать в буферном режиме и при этом балансировать ячейки. Это приводит к дисбалансу и частому срабатыванию защиты и перезаряду ячеек. А дорогие BMS умеют всё, но стоят очень дорого как я считаю, и рассчитаны на большие ёмкости, а для АКБ небольшой ёмкости эти BMS будут стоить дороже чем сам аккумулятор.

Концепция моей BMS

1. Я думаю вполне достаточно контролировать ячейки и аккумулятор в целом только по напряжению, не усложняя дополнительными измерениями тока и сопротивления. Да, конечно для точного определения ёмкости и токов проходящих в цепи хотелось бы знать всё. Но обычному пользователю совершенно не интересно какие токи там блуждают между ячейками, их внутреннее сопротивление, или просто ток заряда/разряда. И ток зарядки обычно показывают контроллеры, через которые происходит заряд АКБ. А так-же если нет, то можно поставить амперметр отдельно. Думаю кроме измерения напряжения ничего больше мерить не нужно и по нему довольно точно можно видеть состояние АКБ и по отдельности ячеек.

2. Еще думаю абсолютно лишние датчики температуры, так-как это лишние провода если плата защиты устанавливается не на АКБ. Ну и перегрев аккумулятора может происходить при огромных токах заряда/разряда что обычно никогда не происходит. Обычно аккумуляторы заряжаются и разряжаются небольшими токами относительно ёмкости, и скажем акб ёмкостью 100Ач никто не будет заряжать током 300-500А и разряжать такими токами. По этому перегрев при исправных ячейках просто невозможен.

3. Плата защиты АКБ обязательно должна иметь возможность настраиваться под разные типы li-ion АКБ, и настройки порогов балансировки. И для этого должен быть установлен дисплей и кнопочки управления. Конечно сейчас можно легко сделать связь с ПК и работать с настройками через программное обеспечение. Но это не удобно так-как ПК не всегда под рукой, да и проще видеть происходящее и настраивать прямо на BMS, чем соединяться с ПК, тем-более что не все уверенные пользователи ПК. В общем я за хороший и большой дисплей на самой BMS, а связь с ПК и мониторинг с записью логов просто ни к чему.

4. Настройка работы должна заключаться в следующем: Установка порога напряжения при котором отключается зарядное устройство. Например для lifepo4 это 3.6-3.9 вольт на ячейку. При этом порог отключения должен вручную изменяться и указываться любой, хоть 3,40вольт, хоть 4.30вольт, то-есть под любой тип литий-ионных аккумуляторов. И для работы в буферном режиме где аккумулятор находится постоянно под напряжением и 100% постоянный заряд губительно влияет на ячейки (они вздуваются).

При этом на плате не нужны встроенные силовые ключи для размыкания контакта. Вообще заряд и разряд нужно разделить на два раздельных канала, чтобы при отключении зарядного устройства от АКБ потребители не оказались в ситуации когда акб отключен и они питаются только от зарядного устройства. А в качестве ЗУ могут быть и солнечные батареи, и ветрогенератор, и любой другой источник с нестабильным и повышенным напряжением, от которого без АКБ могут сгореть подключенные потребители. Вот чтобы этого не случилось (как уже случалось) нужно разделить каналы отключения зарядки и потребителей.

При этом не нужно ставить на плате транзисторные ключи на определенный ток, так-как кому-то скажем хватит и 10А, а кому-то и 200А мало. Вместо ключей можно просто сделать маломощные выводы скажем с током на 1А, на которые можно вешать обычные или твердотельные реле, которыми и отключать зарядку и потребителей. Например если у вас ток зарядки не превышает 20А, то ставим на заряд реле на 20А. А если разряд через инвертор бывает токами до 100А, то ставить реле отключения потребителей на 100А.

5. Пороги балансировки ячеек тоже должны настраиваться и ток балансировки должен быть довольно мощный, думаю до 5А на случай использования некачественных ячеек с разным внутренним сопротивлением и разной емкости. Вот здесь можно использовать технологию PWM для установки тока балансировки. Или к примеру сделать возможность смены балансировочных резисторов на разный ток.

Внешний вид контроллера li-ion аккумуляторов

По внешнему виду я хочу видеть примерно такое устройство. Та-же с дисплеем, только раза в три побольше в общем 4-5 дюймов.

BMS lcd

Контроллер литий-ионных аккумуляторов BMS так-же должна иметь выходы на ячейки, только на болтиках, количество думаю любое от 2S до 16S. Выход отключения зарядного устройства под внешнее реле отключения, так-же выход отключения потребителей аналогичный. И думаю больше ничего не нужно. И так-как балансиры будут находится внутри BMS, то должен быть массивный алюминиевый радиатор способный рассеивать до 300ватт энергии.

Вообще конечно можно делать законченные BMS с внутренними ключами и различным током балансировки, и под разное количество ячеек, но их нужно будет десятки различных конфигураций выпускать. А так одна BMS подходящая под основные задачи. Ток балансировки 5А на ячейку конечно большеват так-как при 16 ячейках и работе всех балансиров мощность рассеиваемая в тепло будет до 300ватт. Но как я описал выше ток балансировки можно устанавливать. Ну и чтобы уменьшить габариты и радиатор максимальный ток балансировки можно уменьшить в 5 раз. 1А думаю тоже будет достаточно даже для АКБ большой ёмкости.

Вот на этом всё, думаю я подробно объяснил что хотелось бы видеть и почему именно так...

e-veterok.ru

Кастрация защищенных аккумуляторов Sanyo и Panasonic и небольшой ликбез по Li-ion

Всех приветствую, кто заглянул на огонек. Речь в обзоре пойдет, как вы наверно уже догадались, о снятии плат защиты с литий-ионных аккумуляторов формфактора 18650, в частности Sanyo UR18650FM 2600mah и Panasonic NCR18650PF 2900mah. На муське был обзор, где автор ставил защиту, а вот обзоров снятия вроде бы не было. Надеюсь, кому-нибудь будет полезен данный обзор. Наверно соглашусь с теми, кто скажет, что данная операция — сущий пустяк и писать обзор на нее не стоило. Но, как показывает практика, некоторые боятся и не решаются снять защиту. Если заинтересовало, прошу под кат. Небольшой ликбез по Li-ion аккумуляторам в вольной трактовке: Прежде всего, аккумулятор — это первичный источник питания, т.е. он сам генерирует энергию. В нашем случае преобразует химическую энергию в электрическую. Первый литий-ионный аккумулятор выпустила корпорация Sony в 1991 году (с ВиКи). Если кто-то думает, что данные аккумуляторы это что-то необычное и даже опасное, то осмелюсь вас успокоить, данные аккумуляторы уже давно устанавливают в различные электронные гаджеты, начиная от телефонов и заканчивая ноутбуками, просто аккумуляторы отличается формфакторами. В массовом производстве используются три класса Li-ion аккумуляторов (за основу взят материал катода, вторая буква в маркировке): 1) литий-кобальтовые LiCoO2 (самые распространенные, наиболее высокая емкость среди Li-Ion) 2) литий-марганцевые LiMnO2, LiMn2O4, LiNiMnCoO2 (более известные как высокотоковые (INR), способные отдавать в нагрузку токи 5-7С, по емкости обычно уступающие первым) 3) литий-феррофосфат LiFePO4 (недооцененные рынком отличные аккумуляторы, по всем параметрам бесспорно выигрывающие у первых двух типов, кроме рабочего напряжения и емкости, она еще ниже, чем у INR) Как говорится, все три класса заточены под выполнение конкретных задач, имеют свои плюсы и мнусы.

Так как единых стандартов маркировки аккумуляторов не существует, все производители маркируют по-разному. Но в идеале должно быть как-то так: 1) первая буква – технология изготовления (I — литий-ионная технология) 2) вторая буква — тип химии, материал катода (C/M/F — кобальтовая/марганцевая/железофосфатная химия) 3) третья буква R — аккумулятор (rechargeable) 4) пять цифр – формфактор (первые две цифры – диаметр, следующие две – длина, последняя цифра – форма акка (0 – цилиндрический)) — 10430 (всем привычные «мизинчики») — 14500 (всем привычные «пальчики»), — 16340 (размер как у батарейки CR123), — 17335 (не распространены) — 18500 (также не слишком распространены) — 18650 (самый распространенный формфактор на рынке), — 26650 (увеличенные, пришли на рынок с подачи компании A123 Systems, производящей литий-феррофосфатные аккумуляторы) — 32650 (совсем монстры, только для стационарных устройств, вес почти 150гр) — плюс неофициальные ф/ф с платами защиты, например 18670… 5) буквы/цифры — специфическая маркировка емкости (у всех производителей по-разному)

Пример маркировки, но как правило у всех производителей по разному: — Samsung ICR18650-26F (литий-ионный аккум с привычной кобальтовой химией, ф/ф 18650 емкостью 2600mah) — Samsung INR18650-20R (литий-ионный аккум с марганцевой химией, т.е. высокотоковый, ф/ф 18650 емкостью 2000mah)

Собственные обозначения: Panasonic NCR18650PF (NCR – разновидность кобальтовой химии, что-то среднее между первым и вторым классом, т.е. простыми словами химия LiNiCoO2, без использования магранца. Как бы под определенный класс не подходит, получился некий симбиоз. Из плюсов – высокая плотность энергии с низкими порогами до 2,5-2,75V). В данном аккумуляторе применена LiNiMnCoO2 химия, то бишь он уже IMR высокотоковый на основе марганца, но производитель оставил старую маркировку. Sanyo UR18650FM – информация может не точная, но встречал информацию, что Sanyo не производит аккумуляторы для розничной продажи, поэтому и не заморачивается с маркировкой. Она штампует банки для крупных производителей электроники, поэтому маркировка чисто «под себя». Возможно, по внутренним обозначениям компании, UR и F(M) означает тип, химию и емкость, по крайней мере в даташитах информации нет (только, что это маркировка модели). А так это литий-ионный аккум с привычной кобальтовой химией, ф/ф 18650 емкостью 2600mah.

Теперь коротко о том, что такое защита и где она обычно находится: Защита – специальная плата, зачастую расположенная на отрицательном выводе аккумулятора. Она защищает аккумулятор от короткого замыкания, перезаряда и переразряда, разрывая питающую цепь. Характеризуется по трем параметрам: — напряжение отсечки при заряде (4,25-4,3V) — напряжение отсечки при разряде (2,4-2,7V) — пропускной ток (в основном зависит от количества мосфетов на плате) Как пример даташит на простенькую защиту: Что представляет из себя плата: Фото защиты на минусовом контакте (наиболее часто встречается): Фото защиты на плюсовом контакте:

Некоторые важные примечания по Li-ion

— Li-ion аккумуляторов в формфакторе 18650 емкостью более 3600mah не бывает. Все ****Fire с яркими цифрами 4000-5500mah всего лишь фейки. Внутри стоят либо отбраковки/отработки, либо аккумуляторы меньшей емкости, а иногда и вообще другого формфактора (вставлены в 18650 как в русской матрешке с песочком для веса), покрытые красочной термоусадочной пленкой. На момент написания статьи максимальную емкость 3600mah имел только Panasonic NCR18650G. Даже аккумуляторы с увеличенным напряжением до 4,35в не дотягивают до этой емкости. Порнослоник на 3600mah (в рознице пока не найти): А вот UltraFire на 2400mah и 3000mah: — Крупные производители не выпускают защищенные аккумуляторы. На их заводах всегда штампуются незащищенные банки, ориентированные на применение в аккумуляторных сборках и других устройствах. Плату защиты ставят другие компании, зачастую покрывая банку своей фирменной термоусадкой. Как пример Keeppower, чуть выше был безымянный Китай Как видим у обоих аккумуляторов внутри всем известный Panasonic NCR18650B, только у первого наиболее качественная защита и банки из более удачных партий, а у второго типичный Китай. — производители подразделяют элементы внутри аккумулятора на три класса по качеству (в маркировке аккумулятора этой информации нет, только внутри компании-производителя) — выпуклость (выемка) в районе положительного контакта аккумулятора не является защитой, это особенность строения всех Li-ion. Также выпуклость на самом плюсовом/минусовом контакте не указывает на наличие платы защиты, это всего лишь тип контактов. Вот та самая выемка, которую некоторые принимают за плату защиты): Два одинаковых незащищенных Panasonic NCR18650B с разными контактами: — Оценивать аккумулятор только по его емкости это большая ошибка. Сравнивать нужно по запасенной энергии, а также по нижнему порогу напряжения. К примеру, весьма популярный порнослоник NCR18650B при разряде током 0,5А показывает емкость 3270mah (11,85Вт), а при разряде 3А уже 3100mah (10,7Вт), но наблюдается конкретная просадка напряжения. К тому же, большинство девайсов не умеют разряжать аккумулятор ниже 2,9-3в и просто отключаются, это нужно учитывать. — У Li-ion аккумуляторов нет никакого эффекта памяти, поэтому их можно заряжать, не дожидаясь разрядки до нуля. По информации с интернета, если заряжать аккум с 70-80%, т.е. ниже этого порога не разряжать, то количество циклов увеличивается с 500-600 до 1000. — Li-ion аккумуляторы имеют некоторый саморазряд, поэтому для уменьшения воздействия этого эффекта при длительном хранении, акки нужно хранить в чуть-чуть разряженном состоянии в прохладном месте (15 градусов). Т.е. уровень заряда должен быть в районе 75%. Потеря емкости при хранении (с ВиКи): — периодически нужно разряжать аккумулятор, раз-два за пару месяцев. — Li-ion аккумуляторы не любят низких и высоких температур, поэтому на морозе обычный литий сильно сливает емкость, а при воздействии высокой температуры сильно снижается ресурс. — абсолютно все Li-ion аккумуляторы имеют защитный клапан стравливания чрезмерного давления при перегреве банки. — Ну и из личного опыта. Не так страшен черт, как его малюют. Я нечаянно закоротил банку LG из ноутбука. Чуток поискрило, не более того. Никакого взрыва и т.п., о чем пишут ярые поклонники защищенных аккумуляторов

Итак, хватит болтовни, вернемся к основной теме, а именно удалению платы защиты. Для чего собственно и нужна «кастрация»: — Для уменьшения потерь энергии на этой плате. К примеру, в однобаночных фонарях это довольно критично, поэтому там предпочтительнее применять аккумуляторы без защиты, т.к. все проводники и элементы защиты есть нечто иное, как сопротивление. А на высоких токах, даже мизерное сопротивление может очень сильно подпортить картину. К примеру, при токе 2,8А на каком-нибудь участке с сопротивлением 0,2 Ома, мы будем иметь падение U=I*R=2,8*0,2=0,56V. Стабилизация на микрухах AMC7135 (народные драйвера Nanjg) будет идти до тех пор, пока напряжение на банке не просядет до 3,8V (приблизительно), потом яркость фонаря будет плавно падать. — Для сборок DIY устройств. Предположим, встроенный в повербанк (ПБ) аккумулятор имеет емкость около 1 Ач и, следовательно, от ПБ толку мало и вы решили заменить встроенный аккумулятор. Но разобрав ПБ, увидели, что токосъемы приварены к контактам аккумулятора точечной сваркой и почитав в интернете об опасности пайки контактов аккумулятора, пришли в тупик (новый аккум придется припаивать к этим токосъемам). Тут как раз поможет данная операция. Если в ПБ имеется встроенная защита от перезаряда/переразряда, то для выхода из этой ситуации, просто покупаем аккумулятор с защитой. При снятии оной, сохраняем приваренные к контактам аккумулятора проводники и уже к ним припаиваем токосъемы повербанка. В результате, все делаем безопасно и сохраняем внешний вид аккумулятора (можно потом его заменить более емким, а этот использовать под другие нужды, просто оторвав проводники и при этом припоя на контактах не будет). — Аккумулятор с защитой не входит в фонарь/зарядник/ПБ/другое устройство. Это касается бюджетных говнофаеров, есть там такая беда, либо бюджетных зарядок, как пример, Miller ML-102 о которой я недавно писал обзор. Они зачастую рассчитаны на незащищенные банки (довольно много подобных устройств). — Устройство потребляет чрезмерный ток и из-за этого срабатывает защита по току. В обычных платах, в среднем порог отключения 5-6А, но может быть и в районе 2,5-3А (в мощном фонаре на 2,8А это уже будет проблемой). — Плата защиты некорректно срабатывает, т.е. раньше зарядника заканчивает заряд или раньше отключает при разряде в устройстве. Бывает и такое, особенно с китайской защитой. К примеру, брендовый зарядник заливает, как и положено, до 4,2V, а плата защиты срабатывает раньше, допустим на 4,18V, тем самым аккумулятор получается чуток недозаряжен (хотя платы рассчитаны на 4,25V). Встречается редко, но все равно неприятно. — Для снижения саморазряда банки. Плата в спящем режиме кушает небольшой ток. — Аккумуляторы с защитой более безопасны, а значит, более востребованы на рынке. Следовательно, они не залеживаются на складах магазинов и постоянно обновляются. В связи с запретом перевозок лития, количество магазинов, гарантированно присылающих литий заметно снижается. И может оказаться ситуация, когда необходимы аккумуляторы без защиты, а в ассортименте магазина только свежие защищенные акки и залежалые незащищенные (либо вообще отсутствуют). А как известно, литий стареет быстро, поэтому и выбор падает на защищенные, хотя они и не нужны. А при небольших телодвижениях, они превращаются в незащищенные (тут, конечно, небольшая переплата за защиту, но приходится чем-то жертвовать, либо давностью, либо стоимостью). — Ну и самое последнее, когда плата защиты просто перегорела/повредилась. С ней вообще ничего не работает. В общем, причин может быть очень много, или банально, просто руки чешутся…

Итак, наши подопечные: Sanyo UR18650FM (покупалась для допиленного говнофаера без защиты от переразряда) + очень качественная (не даром кличут народной) + хорошая разрядная кривая (хорошо ведет себя на токовой нагрузке) + недорогая + нет подделок — емкость чуть меньше заявленной (особенно на токовой нагрузке) — слабый (тонкий) плюсовой контакт (в устройствах с жесткой пружинкой прогибается) — не морозостойкая (новая версия UR18650ZY — морозостойкая) — иногда попадаются залежалые

Кастрация Sanyo

Фото с защитой: Итак, для начала срезаем край загнутой термоусадки. Далее решаем, нужна ли эта внешняя термоусадка (может пригодиться для дополнительной защиты, а также для предотвращения бултыхания банки внутри устройства, например, фонаря). Если решили оставить, то аккуратно подковыриваем платодержатель. Края термоусадки будут болтаться, потом их можно нагреть и они прижмутся к корпусу. Мне защита не нужна, т.к. аккум будет использоваться в фонаре Convoy M1, а дополнительные потери энергии там не нужны, к тому же в нем есть защита от переразряда. Отдираем пластиковую шайбочку (похоже ее не сфоткал), но можно оставить как есть, если нужен выпуклый плюсовой контакт: Мне выпуклый контакт был не нужен, поэтому аккуратно отверткой отгибаем плюсовой контакт (важно не закоротить плюсовой контакт на минусовой корпус): Как видим, плюсовой контакт держится только на одном токоподводе и прижимается пластиковой шайбой с термоусадкой: Т.к. внешняя термоусадка у меня уже покоцалась, решено было покрыть банку новой термоусадкой. Поэтому старую просто сдираем: Видим проводник, приклеенный на скотч (да да, так просто выткнуть из-под старой термоусадки его не получится): Отдираем все это хозяйство: Наблюдаем остатки клея, которым была приклеена пластиковая шайба. Клей легко удаляется спиртом/ацетоном: Берем у жены/подруги обычный фен и прогреваем термоусадку. У кого есть строительный фен/паяльная станция, тот в шоколаде. Ими все делается качественно и быстро. Все неровности стянутся. Тут важно сильно не нагревать контакт, достаточно пары секунд, чтобы термоусадка скукожилась. Вот такая плата защиты стояла в народной банке с БИКа: Все элементы защиты (шайбачка куда-то пропала): По желанию упаковываем банку в новую термоусадку. Купить можно тут Термоусадка Для этого отрезаем под прямым углом новую термоусадку, запас по бокам 3-4 мм. Если будут кривые торцы трубки, при нагреве она ляжет не ровно. Т.к. трубка отсылается в скрученном состоянии (бобина), то когда надените ее на банку, не стоит разглаживать острые торцы, иначе после «усадки» останутся две неприглядные полосы вдоль аккумулятора: Аккуратно прогреваем. Главное вести фен плавно и не прыгать с одного места на другое, иначе будут небольшие «разводы»: Все, аккумулятор готов к труду и обороне:

Теперь очередь за Panasonic NCR18650PF (покупалась для замены встроенной батареи в Power Bank) + хорошее качество (Sanyo является дочерней компанией Panasonic, они объединились в 2009г) + хорошая токоотдача (это высокотоковый IMR аккумулятор, способен отдавать до 10А) + вполне демократичная цена для такой емкости + усиленный плюсовой контакт ± низкий порог разряда в 2,5V (аналогичный NCR18650PD имеет порог разряда в 2,75V) — не морозостойкая

Кастрация Panasonic

Фото с защитой В моем случае, мне важны были токоподводы, т.к. в случае неудачной попытки сборки ПБ аккумулятор использовался бы в фонаре, а луженые контакты на батарее не есть гуд. В принципе, в прямой пайке напрямую к контактам нет ничего сложного, главное иметь 40-60Вт паяльник, флюс и все делать быстро. Итак, сдираем термоусадку: Т.к. мне нужны были токоподводы, то я откусил их бокорезами под самый корень, т.е. у самой платы: Тонкой отверткой, а лучше пластиковыми картами отсоединяем пластиковую шайбу: Если нужен выпуклый контакт, как писал выше, то аккуратно отламываем токоотвод многочисленными сгибаниями и ставим шайбу обратно. В моем случае он мне не нужен, с таким контактом данный аккум просто не входит в цилиндрический ПБ, поэтому отдираем все подчистую: Откусываем длинный проводник, он еще пригодится в будущем ПБ: Вот что получилось: А тут стояла такая плата защиты:

В термоусадку данный аккум будет заворачиваться вместе с кишками ПБ.

Общие примечания: Зачастую, можно просто удалить контакты защиты (с плюса и минуса) и саму плату, а прозрачную/красочную термоусадку, вместе с проводником (желтая полоска вдоль корпуса) оставить, как дополнительную защиту корпуса аккумулятора. Сам проводник из-под термоусадки не вытащить, он приклеен на скотч. К контактам защищенного аккумулятора можно припаивать что угодно, там есть зазор, поэтому самой банке перегрев не грозит. Снимать защиту нужно аккуратно, не закоротив проводники.

Собственно, для чего я снимал защиту. Моим первым фонариком на мощном светодиоде, был дешевенький говнофаер. В дальнейшем, пощупав фонари, приобрел более качественные, а эти дешевые хоть и доработались, но все равно до уровня добротного продукта не дотягивали. Поэтому их было решено сплавить в гараж/сад. Использовались они редко и ставить драйвер с защитой в них было не совсем целесообразно. Поэтому был сделан базовый стабилизатор без защиты от переразряда (дешево и сердито), а использовать в таком фонаре банку без защиты было опасно. Поэтому и были приобретены аккумуляторы с защитой. Но с недавнего времени парк фонариков пополнился и доработанные фонари ушли на покой. А банки с защитой оказались не нужны. Это все касается Sanyo. С банкой порнослоника история чуть другая. Он приобретался в качестве замены встроенного в ПБ аккумулятора. О том, как я пристраивал порнослоника в ПБ может быть расскажу в следующей статье…

И еще дополнительная информация по аккумуляторам: Фото разряда в компараторах: Сравним наших подопечных с наиболее удачными по соотношению цена/характеристики собратьями Т.к. не знаю, как вставить в обзор крупное фото, то поясню: Разряд током 3А до 3V: — Безоговорочный лидер LG ICR18650D1 3000mah 4,35V (10Wh, напряжение держит отлично, емкость 3000mah, т.е. в теории должен держать 3А – 60 минут, в тесте – 3400сек/56-57 минут, измеренная емкость при 3А — 2840mah). — Далее идет народная банка Sanyo UR18650FM 2600mah 4,2V (8,65Wh, напряжение держит чуть хуже Лыжи, но там завышенный порог в 4,35V, для 4,2V акков просто отлично, емкость 2600mah, т.е. в теории должен держать 3А – 51,6 минут, в тесте – 2960сек/49,5 минут, измеренная емкость при 3А — 2473mah. Как видим, чуть меньше заявленного, зато параметры просто отличные). Следом наш Panasonic NCR18650PF 2900mah 4,2V (8,89Wh, напряжение держит отлично, вначале даже превосходит Sanyo, емкость 2900mah, т.е. в теории должен держать 3А – 58 минут, в тесте – 3054сек/51 минута, измеренная емкость при 3А — 2551mah. Как видим, на много меньше заявленного, но у него порог разряда до 2,5V (в тесте до 3V). В этом и заключается вся фишка Паносов, что многие девайсы всю емкость с порнослоника не возьмут, да и цена выше Санье и Самсонов). И последний Samsung ICR18650-26F 2600mah 4,2V (8,73Wh, напряжение держит чуть хуже Sanyo, но зато емкость чуть больше, плюс стоит сущие копейки, емкость 2600mah, т.е. в теории должен держать 3А – 51,6 минут, в тесте – 3036сек/50,6 минут, измеренная емкость при 3А — 2538mah. Как видим, лучше Sanyo, а при сравнении с Порнослоником 2900mah это же самое). Вот сравнение в другом компараторе Sanyo и Samsung (к сожалению, в нем нет нашего Паноса):

Небольшая информация о дате производства банок Sanyo: По официальному даташиту: Моя банка имела маркировку UR18650FM S15B, т.е.: — UR18650FM – пусть будет наименование модели — первая буква — это год выпуска: A – 1996, B – 1997 …. O – 2010, P – 2011, Q – 2012, R – 2013, S — 2014, T – 2015 и т.д. — следующие две цифры означают неделю выпуска банки: 15 неделя — середина апреля — третья буква — технологическая линия. Итого: дата производства Sanyo UR18650FM S15B — апрель 2014г.

Небольшая информация о дате производства банок Panasonic Моя банка имела маркировку NCR18650PF 4307 (нижняя строка, четыре символа), т.е.: — NCR18650PF – пусть будет наименование модели — первая цифра — это год выпуска: 1 – 2011, 2 – 2012, 3 – 2013, 4 — 2014, 5 – 2015 и т.д. — следующая цифра – это месяц выпуска: 1 – январь, 2 – февраль, 9 – сентябрь …… X – октябрь, Y – ноябрь, Z – декабрь — третья и четвертая цифра это число месяца: 05, 14, 29. Что означает большая буква я не знаю. Может либо технологическую линию, либо класс качества, либо место производства. В общем, не знаю, но интересно. Итого: дата производства Panasonic NCR18650PF 4307 – 7 марта 2014г.

Небольшая информация о дате производства банок Samsung: Старенький даташит: К примеру, маркировка SAMSUNG ICR18650-26F 2CB3(нижняя строка, четыре символа), т.е.: — ICR18650-26F – пусть будет наименование модели (по «стандарту») — первая цифра – филиал компании где произведена батарея (не интересна) — вторая цифра – это год выпуска: Y-2005, L-2006, P-2007, Q-2008, S-2009, Z-2010, B-2011, C-2012, D-2013, E-2014, F-2015, G-2016, H-2017 и т.д. — третья цифра – это месяц выпуска: 1 – январь, 2 – февраль, 9 – сентябрь …… A – октябрь, B – ноябрь, C – декабрь — четвертая цифра – это неделя выпуска банки: 1, 2, 3, 4 и 5 Итого: дата производства SAMSUNG ICR18650-26F 2CB3 – 3 неделя ноября 2012г.

Небольшая информация о дате производства банок LG К примеру, маркировка LG ICR18650D1 3000mAh L040B097A1 (нужны первые четыре символа), т.е.: — LG ICR18650D1 – пусть будет наименование модели — первая цифра — это год выпуска: J – 2010, K – 2011, L – 2012, M – 2013, N — 2014 и т.д. — следующие три цифры – это день выпуска: 040 (40 день), высчитывать неудобно… Итого: дата производства LG ICR18650D1 L040B097A1 – 9 февраля 2012г.

PS, вся информация была найдена в интернете в разное время и записана в текстовом файле (всегда так добавляю полезную информацию). На каком именно ресурсе я ее нашел уже не помню, так что даже не спрашивайте, :)

Киска

Кому интересно, еще обзоры:

mysku.ru

Защита аккумулятора от разряда (BMS)

Что-то попаять захотелось… Не отказывать же себе в таком удовольствии 🙂

Защита аккумулятора от разряда (BMS)

Защита аккумулятора от разряда (BMS)

Предыстория такова. Собираю квадрокоптер 🙂 Нужны хорошие аккумуляторы: большой ёмкости, с хорошей токоотдачей, лёгкие. Т.е. литий-ионные. Была закуплена пара аккумуляторов и было решено их протестировать. Я в последнее время проверяю всё что покупаю в Китае. Гораздо лучше собирать устройство из заведомо исправных деталей: во-первых, есть время перезаказать детальку если пришла дохлая, во-вторых, на столе элемент проверить проще чем в устройстве и не придётся выдирать его из недр в случае чего. Входной контроль — это правильно!

Итак, проверяю мои батарейки и обнаруживаю что они показывают ёмкость заметно меньше заявленной. Ну, бывает, полежали на складе и всё такое (хотя напряжение было в норме и это должно было насторожить). Помню что аккумуляторы можно «потренировать», т.е. провести несколько циклов разряд-заряд и тогда ёмкость может восстановиться.

Ставлю одну батарею на зарядник iMax B6, который умеет автоматически управлять процессами разряда и заряда. Процесс долгий… что делать со второй? Ага, мысль! Давай-ка я её по-старинке, лампочкой разряжу! Да, я знаю что литий-ионные аккумуляторы нельзя разряжать ниже примерно 3 Вольт на элемент («банку»), но у меня же есть тестер, я буду контролировать напряжение прям на балансировочном разъёме… В общем, плохая идея. Я, конечно закрутился и угандошил батарейку в ноль 🙁

Я думал — ничего страшного. Прошлый опыт с никель-кадмием говорит что полный разряд это плохо, но не смертельно. Ан нет! Моему аккумулятору хватило одного раза чтобы один элемент из трёх вздулся и сдох (пришлось его ампутировать и теперь у меня есть 2S аккумулятор). Т.е. литий-ионный аккумулятор разряжать ниже 3В на элемент не просто нельзя, а совсем, вообще нельзя!

Так, думаем дальше. Далеко не во всех приборах, особенно самодельных есть контроллер, который не даст разрядить батарею до опасного уровня. Значит нужно некое устройство, которое будет следить за напряжением и предупредит в случае чего. Моделисты всего мира в голос ржут надо мной за такую свежую идею  😀

Как это сделать? Мысль потекла в какие-то влажные дали, в сторону схемы на микроконтроллере с поэлементным контролем батареи… И тут на глаза попалось видео, в котором была предложена очень простая аналоговая схемка, которая отключает питание при снижении напряжения ниже заданного порога. Правда, она следит только за общим напряжением на батарее и не контролирует отдельные «банки»…. но мы же заряжаем наш аккумулятор по-честному, на балансирующем заряднике, поэтому при работе достаточно знать общее напряжение.

Пока я размышляю, китайцы действуют! И вот один из них накосячил вместо заказанных «кренок» (L7805) прислал мощные МОП-транзисторы (они же MOSFET). Нууууу… раз столько всего сошлось — пора браться за паяльник 🙂

Так, схема годная. Но есть нюанс (c). В ней есть кнопка запуска. Т.е. чтобы включить нагрузку, надо подать напряжение и кратковременно нажать кнопку. Неудобно: два действия вместо одного. Хочу без кнопки!

Смотрим исходную схему. Если напряжение АКБ выше порога срабатывания стабилитрона, он открыт. Через базу транзистора VT1 течёт ток и он тоже открыт. На затвор VT2 попадает напряжение и он тоже открыт. На нагрузку идёт питание. Если напряжение на АКБ падает ниже порога, стабилитрон закрывается, VT1 и VT2 — тоже. Но в изначальном состоянии если схема обесточена, VT2 закрыт, цепь разорвана и ток через стабилитрон возникнуть не может. Для решения этой проблемы автор применил хак в виде кнопки, которая «обходит» VT2 и запускает схему.

Что нам нужно чтобы избавиться от кнопки. Надо чтобы при подаче напряжения через базу потёк ток, хотя бы кратковременно. Дальше схема запустится и будет работать как задумано. Нужна как бы перемычка между базой VT1 и минусом АКБ, которая возникнет в момент включения питания и исчезнет через некоторое время. На эту роль хорошо подходит… конденсатор. Известно что при подаче напряжения на разряженный конденсатор через него течёт ток… М… Как ток может течь через конденсатор если это по сути разрыв? Парадокс, но может. Сейчас запутаю ещё больше. На самом деле ток через конденсатор не течёт, но он течёт через цепь конденсатора. За подробностями — в любую книжку по аналоговой схемотехнике или сюда.

Теперь смотрим мою схему в заголовке статьи. Рядом со стабилитроном конденсатор. Это и есть наша умная перемычка-времянка для старта схемы. Мне под руку попался конденсатор на 20 мкФ, но думаю можно и поменьше.

Ещё одно усовершенствование, которое я сделал — добавил индикацию срабатывания защиты. Т.е. напряжение на АКБ просело, схема отключила нагрузку и зажёгся светодиод. Теперь пользователь точно знает почему упал его вертолёт что это сработала защита, а отвалилось что-то плохо припаянное. На моей схеме это цепь VT1-R1-HL1 (да, надо было сохранить нумерацию оригинала… но переделывать уже лень). Если индикация не требуется, эти элементы можно исключить.

И ещё маленький нюанс. На исходной схеме в цепи стабилитрона стоят резисторы R3-R4 по 10 кОм. Это много. Предположим, напряжение отсечки 9В. При этом напряжении через стабилитрон течёт ток 9 В / 20 кОм = 0.45 мА. Этого мало. Стабилитрону для нормальной работы требуется чтобы ток через него был не ниже определённого значения. Я сходу не нашёл какой минимальный ток допустим для 1N4739A, но уменьшил сопротивления резисторов так чтобы ток был чуть больше 1 мА.

Я спаял эту схему на макетке, всё работает как и задумано.

Ссылки:Схема в формате DipTraceБиблиотеку для DipTrace можно забрать здесь

Видео Алекса ГайвераЗдесь человек предлагает использовать эту схему для автомобиля

 

wan-derer.ru