Никель-кадмиевый аккумулятор. Аккумулятор кадмиевый


Никель-кадмиевый аккумулятор - Источники питания радиоэлектронной аппаратуры

Никель-кадмиевый аккумулятор - портал intellect.ml

 

Никель-кадмиевые аккумуляторы Никель-кадмиевый аккумулятор - портал intellect.ml

 

Малогабаритные дисковые никель-кадмиевые аккумуляторы Д-0,03 и зарядное устройство к ним. СССР, 1980-е годы. Никель-кадмиевый аккумулятор - портал intellect.ml

 

Малогабаритные дисковые никель-кадмиевые аккумуляторы Д-0,26, Д-0,06 и зарядное устройствок аккумулятору Д-0,06. Никель-кадмиевый аккумулятор - портал intellect.ml

 

Авиационная бортовая никель-кадмиевая аккумуляторная батарея 20НКБН-25-У3

Никель-ка́дмиевый аккумуля́тор (NiCd) — вторичный химический источник тока, в котором катодом является гидрат закиси никеля Ni(OH)2 с графитовым порошком (около 5-8 %) , электролитом — гидроксид калия KOH плотностью 1,19-1,21 с добавкой гидроксида лития LiOH (для образования никелатов лития и увеличения ёмкости на 21-25 %), анодом — гидрат закиси кадмия Cd(OH)2 или металлический кадмий Cd (в виде порошка). ЭДС никель-кадмиевого аккумулятора около 1,37 В, удельная энергия около 45—65 Вт·ч/кг. В зависимости от конструкции, режима работы (длительные или короткие разряды) и чистоты применяемых материалов, срок службы составляет от 100 до 9000 циклов заряда-разряда. Современные (ламельные) промышленные никель-кадмиевые батареи могут служить до 20-25 лет. Никель-кадмиевые аккумуляторы (Ni-Cd) наряду с Никель-Солевыми аккумуляторами могут храниться разряженными, в отличие от никель-металл-гидридных аккумуляторов (Ni-MH), которые нужно хранить полностью заряженными и от литий-ионных аккумуляторов (Li-ion), которые необходимо хранить при 40%-ом заряде от ёмкости аккумулятора.Серебряно-цинковые аккумуляторы хранятся только разряженными.

 

Содержание

   

  • 1 История изобретения
  • 2 Принцип действия
  • 3 Параметры
  • 4 Области применения
    • 4.1 Дисковые никель-кадмиевые аккумуляторы
  • 5 Производители
  • 6 Безопасная утилизация
  • 7 См. также
  • 8 Литература
  • 9 Примечания

 

История изобретения

Принцип действия

Принцип действия никелькадмиевых аккумуляторов основан на обратимом процессе:

2NiOOH + Cd + 2h3O ↔ 2Ni(OH)2 + Cd(OH)2 E0 = 1,30 В.

Никелевый электрод представляет собой пасту гидроксида никеля, смешанную с проводящим материалом и нанесенную на стальную сетку, а кадмиевый электрод - стальную сетку с впрессованным в нее губчатым кадмием. Пространство между электродами заполнено желеобразным составом на основе влажной щелочи, который замерзает при -27°С[1]. Индивидуальные ячейки собирают в батареи, обладающие удельной энергией 20-35 Вт*ч/кг и имеющие большой ресурс - несколько тысяч зарядно-разрядных циклов.

Параметры

  • Теоретическая энергоёмкость: 237 Вт·ч/кг.
  • Удельная энергоёмкость: 45-65 Вт·ч/кг.
  • Удельная энергоплотность: 50-150 Вт·ч/дм³.
  • Удельная мощность: 150..500 Вт/кг.
  • ЭДС = 1,37 В.
  • Рабочее напряжение = 1,35..1,0 В.
  • Нормальный ток зарядки = 0,1…1 C, где С - емкость.
  • Саморазряд: 10 % в месяц.
  • Рабочая температура: −50…+40 °C.

В настоящее время использование никель-кадмиевых аккумуляторов сильно ограничено по экологическим соображениям, поэтому они применяются только там, где использование других систем невозможно, а именно, в устройствах, характеризующихся большими разрядными и зарядными токами. Типичный аккумулятор для летающей модели можно зарядить за полчаса, а разрядить за 5 минут. Благодаря очень низкому внутреннему сопротивлению аккумулятор не нагревается даже при зарядке большим током. Только когда аккумулятор полностью зарядится, начинается заметный разогрев, что и используется большинством зарядных устройств как сигнал окончания зарядки. Конструктивно все никель-кадмиевые аккумуляторы оснащены прочным герметичным корпусом, который выдерживает внутреннее давление газов в тяжелых условиях эксплуатации.

Цикл разряда начинается от 1,35 В и заканчивается на 1,0 В (соответственно 100 % емкости и 1 % оставшейся емкости)

Электроды никель-кадмиевых аккумуляторов изготавливаются как штамповкой из листа, так и прессованием из порошка. Прессованные электроды более технологичны, дешевле в производстве и обладают более высокими показателями рабочей ёмкости, в связи с чем все аккумуляторы бытового назначения имеют прессованные электроды. Однако прессованные системы подвержены так называемому «эффекту памяти». Эффект памяти проявляется, когда аккумулятор подвергают зарядке раньше, чем он реально разрядится. В электрохимической системе аккумулятора появляется «лишний» двойной электрический слой и его напряжение снижается на 0.1 В. Типичный контроллер устройства, использующего аккумулятор, интерпретирует это снижение напряжения как полный разряд батареи и сообщает, что батарея «плохая». Реального снижения энергоёмкости при этом не происходит, и хороший контроллер может обеспечить полное использование емкости аккумулятора. Тем не менее, в типичном случае, контроллер побуждает пользователя производить все новые и новые циклы зарядки. А это и приводит к тому, что пользователь своими руками, из лучших побуждений, «убивает» батарею. То есть, можно сказать, что батарея выходит из строя не столько от «эффекта памяти» прессованных электродов, сколько от «эффекта беспамятства» недорогих контроллеров.

Бытовой никель-кадмиевый аккумулятор, разряжаемый и заряжаемый слабыми токами (например, в пульте дистанционного управления телевизора), быстро теряет ёмкость и пользователь считает его вышедшим из строя. Так же и аккумулятор, длительное время стоявший на подзарядке (например, в системе бесперебойного питания) потеряет ёмкость, хотя его напряжение будет правильным. То есть, использовать никель-кадмиевый аккумулятор в буферном режиме нельзя. Тем не менее, один цикл глубокой разрядки и последующая зарядка полностью восстановят ёмкость аккумулятора.

При хранении NiCd аккумуляторы также теряют ёмкость, хотя и сохраняют выходное напряжение. Чтобы избежать неверной разбраковки при снятии аккумуляторов с хранения, рекомендуется хранить их в разряженном виде, тогда после первой же зарядки аккумуляторы будут полностью готовы к использованию. Лучше всего подключить цепочку из двух диодов и резистора на каждую банку, чтобы ограничить напряжение на уровне 1-1.1 В на элемент. Это также способствует выравниванию характеристик элементов, из которых состоит батарея. После длительного хранения батареи необходимо провести 2—3 цикла заряд/разряд током, численно равным номинальной емкости (1C), чтобы она вошла в рабочий режим и работала с полной отдачей.

Области применения

Малогабаритные никель-кадмиевые аккумуляторы используются в различной аппаратуре как замена стандартного гальванического элемента, особенно, если аппаратура потребляет большой ток. Так как внутреннее сопротивление никель-кадмиевого аккумулятора на один-два порядка ниже, чем у обычных марганцево-цинковых и марганец-воздушных батарей, мощность выдаётся стабильнее и без перегрева.

Никель-кадмиевые аккумуляторы применяются на электрокарах (как тяговые), трамваях и троллейбусах (для питания цепей управления), речных и морских судах. Широко применяются в авиации в качестве бортовых аккумуляторных батарей самолётов и вертолётов. Используются как источники питания для автономныхшуруповёртов/винтовёртов и дрелей.

Несмотря на развитие других электрохимических систем и ужесточение экологических требований, никель-кадмиевые аккумуляторы остаются основным выбором для высоконадёжных устройств, потребляющих большую мощность, например, фонарей для дайвинга.

Дисковые никель-кадмиевые аккумуляторы

В СССР для питания электронных устройств были распространены герметичные (взрываются) дисковые никель-кадмиевые аккумуляторы.

НазваниеаккумуляторадиаметрммвысотаммнапряжениевольтЁмкостьА*часРекомендуемый ток разряда, мАПрименениеД-0,03 Д-0,06 Д-0,125 Д-0,26 Д-0,55 7Д-0,125
11,6 5,5 1,2 0,03 3 фотоаппараты,слуховые аппараты
15,6 6,4 1,2 0,06 12 фотоаппараты, фотоэкспонометры,слуховые аппараты, дозиметры
20 6,6 1,2 0,125 12,5 аккумуляторные электрические фонарики
25,2 9,3 1,2 0,26 26 аккумуляторные электрические фонарики, фотовспышки, калькуляторы
34,6 9,8 1,2 0,55 55 фотовспышки
    8,4 0,125 12,5 замена батарее Крона

Производители

Ni-Cd аккумуляторы производят множество фирм, в том числе крупные интернациональные фирмы, такие как GP Batteries Int. Ltd., SAMSUNG (под брендом Pleomax), VARTA, GAZ, KONNOC, METABO, EMM, Advanced Battery Factory, Panasonic/Matsushita Electric Industrial, ANSMANN и другие. Среди отечественных производителей можно назвать НИАИ (создан на базе Центральной аккумуляторной лаборатории, 1946 г.), КОСМОС, ЗАО "Опытный завод НИИХИТ" и ЗАО "НИИХИТ-2".

Безопасная утилизация

Плавка продуктов утилизации NiCd аккумуляторов происходит в печах при высоких температурах, кадмий в этих условиях становится чрезвычайно летучим, и в случае, если печь не оборудована специальным улавливающим фильтром, токсичные вещества (например, пары кадмия) выбрасываются во внешнюю среду, отравляя окружающие территории. Вследствие этого оборудование для утилизации является более дорогим, чем для утилизации свинцовых батарей.

См. также

  • Зарядное устройство
  • Никель-металл-гидридный аккумулятор (NiMH)
  • Литий-ионный аккумулятор (Li-Ion)
  • Литий-полимерный аккумулятор
  • Литий-железо-фосфатный аккумулятор
  • Нанопроводниковый аккумулятор
  • Электрический аккумулятор
  • Батарейка
  • Батарейка AA
  • Батарейка AAA

intellect.ml

Никель-кадмиевый аккумулятор — Википедия

Никель-кадмиевые аккумуляторы Малогабаритные дисковые никель-кадмиевые аккумуляторы Д-0,03 и зарядное устройство к ним. СССР, 1980-е годы. Малогабаритные дисковые никель-кадмиевые аккумуляторы Д-0,26, Д-0,06 и зарядное устройство к аккумулятору Д-0,06. Авиационная бортовая никель-кадмиевая аккумуляторная батарея 20НКБН-25-У3

Никель-ка́дмиевый аккумуля́тор (NiCd) — вторичный химический источник тока, в котором катодом является гидрат закиси никеля Ni(OH)2 с графитовым порошком (около 5–8%), электролитом — гидроксид калия KOH плотностью 1,19–1,21 с добавкой гидроксида лития LiOH (для образования никелатов лития и увеличения ёмкости на 21–25%), анодом — гидрат закиси кадмия Cd(OH)2 или металлический кадмий Cd (в виде порошка). ЭДС никель-кадмиевого аккумулятора — около 1,37 В, удельная энергия — порядка 45–65 Вт·ч/кг. В зависимости от конструкции, режима работы (длительные или короткие разряды) и чистоты применяемых материалов, срок службы составляет от 100 до 900 циклов заряда-разряда. Современные (ламельные) промышленные никель-кадмиевые батареи могут служить до 20–25 лет. Никель-кадмиевые аккумуляторы (NiCd) наряду с Никель-Солевыми аккумуляторами могут храниться разряженными, в отличие от никель-металл-гидридных (NiMH) и литий-ионных аккумуляторов (Li-ion), которые нужно хранить заряженными.

История изобретения

В 1899 году Вальдмар Юнгнер (Waldmar Jungner) из Швеции изобрёл никель-кадмиевый аккумулятор, в котором в качестве положительного электрода использовался никель, а в качестве отрицательного — кадмий. Двумя годами позже Эдисон (Edison) предложил альтернативную конструкцию, заменив кадмий железом. Из-за высокой (в сравнении с сухими или свинцово-кислотными аккумуляторами) стоимости, практическое применение никель-кадмиевых и никель-железных аккумуляторов было ограниченным.

После изобретения в 1932 году Шлехтом (Shlecht) и Акерманом (Ackermann) спрессованного анода было внедрено много усовершенствований, что привело к более высокому току нагрузки и повышенной долговечности. Хорошо известный сегодня герметичный никель-кадмиевый аккумулятор стал доступен только после изобретения Ньюманом (Neumann) полностью герметичного элемента в 1947 году.

Видео по теме

Принцип действия

Принцип действия никель-кадмиевых аккумуляторов основан на обратимом процессе:

2NiOOH + Cd + 2h3O ↔ 2Ni(OH)2 + Cd(OH)2 E0 = 1,30 В.

Никелевый электрод представляет собой пасту гидроксида никеля, смешанную с проводящим материалом и нанесенную на стальную сетку, а кадмиевый электрод — стальную сетку с впрессованным в неё губчатым кадмием. Пространство между электродами заполнено желеобразным составом на основе влажной щелочи, который замерзает при -27°С[1]. Индивидуальные ячейки собирают в батареи, обладающие удельной энергией 20–35 Вт*ч/кг и имеющие большой ресурс — несколько тысяч зарядно-разрядных циклов.

Параметры

  • Теоретическая энергоёмкость: 237 Вт·ч/кг
  • Удельная энергоёмкость: 45–65 Вт·ч/кг
  • Удельная энергоплотность: 50–150 Вт·ч/дм³
  • Удельная мощность: 150…500 Вт/кг
  • ЭДС = 1,37 В
  • Рабочее напряжение = 1,35…1,0 В
  • Нормальный ток зарядки = 0,1…1 C, где С — ёмкость
  • Срок службы: около 100—900 циклов заряда/разряда.
  • Саморазряд: 10% в месяц
  • Рабочая температура: −50…+40 °C

В настоящее время использование никель-кадмиевых аккумуляторов сильно ограничено по экологическим соображениям, поэтому они применяются только там, где использование других систем невозможно, а именно — в устройствах, характеризующихся большими разрядными и зарядными токами. Типичный аккумулятор для летающей модели можно зарядить за полчаса, а разрядить за пять минут. Благодаря очень низкому внутреннему сопротивлению аккумулятор не нагревается даже при зарядке большим током. Только когда аккумулятор полностью зарядится, начинается заметный разогрев, что и используется большинством зарядных устройств как сигнал окончания зарядки. Конструктивно все никель-кадмиевые аккумуляторы оснащены прочным герметичным корпусом, который выдерживает внутреннее давление газов в тяжёлых условиях эксплуатации.

Цикл разряда начинается с 1,35 В и заканчивается на 1,0 В (соответственно 100% ёмкости и 1% оставшейся ёмкости)

Электроды никель-кадмиевых аккумуляторов изготавливаются как штамповкой из листа, так и прессованием из порошка. Прессованные электроды более технологичны, дешевле в производстве и обладают более высокими показателями рабочей ёмкости, в связи с чем все аккумуляторы бытового назначения имеют прессованные электроды. Однако прессованные системы подвержены так называемому «эффекту памяти». Эффект памяти проявляется, когда аккумулятор подвергают зарядке раньше, чем он реально разрядится. В электрохимической системе аккумулятора появляется «лишний» двойной электрический слой и его напряжение снижается на 0,1 В. Типичный контроллер устройства, использующего аккумулятор, интерпретирует это снижение напряжения как полный разряд батареи и сообщает, что батарея «плохая». Реального снижения энергоёмкости при этом не происходит, и хороший контроллер может обеспечить полное использование ёмкости аккумулятора. Тем не менее, в типичном случае контроллер побуждает пользователя выполнять всё новые и новые циклы зарядки. А это и приводит к тому, что пользователь своими руками, из лучших побуждений, «убивает» батарею. То есть можно сказать, что батарея выходит из строя не столько от «эффекта памяти» прессованных электродов, сколько от «эффекта беспамятства» недорогих контроллеров.

Бытовой никель-кадмиевый аккумулятор, разряжаемый и заряжаемый слабыми токами (например, в пульте дистанционного управления телевизора), быстро теряет ёмкость, и пользователь считает его вышедшим из строя. Так же и аккумулятор, длительное время стоявший на подзарядке (например, в системе бесперебойного питания) потеряет ёмкость, хотя его напряжение будет правильным. То есть использовать никель-кадмиевый аккумулятор в буферном режиме нельзя. Тем не менее, один цикл глубокой разрядки и последующая зарядка полностью восстановят ёмкость аккумулятора.

При хранении NiCd-аккумуляторы также теряют ёмкость, хотя и сохраняют выходное напряжение. Чтобы избежать неверной разбраковки при снятии аккумуляторов с хранения, рекомендуется хранить их в разряженном виде — тогда после первой же зарядки аккумуляторы будут полностью готовы к использованию. Для полной разрядки батареи и выравнивания напряжений на каждом разряжаемом элементе можно подключить цепочку из двух кремниевых диодов и резистора на каждый элемент, тем самым ограничив напряжение на уровне 1-1.1 В на элемент. При этом падение напряжения на каждом кремниевом диоде составляет 0,5–0,7 В, поэтому выбирать диоды для цепочки необходимо вручную, используя, например, мультиметр. После длительного хранения батареи необходимо провести два-три цикла заряд/разряд током, численно равным номинальной ёмкости (1C), чтобы она вошла в рабочий режим и работала с полной отдачей.

Области применения

Малогабаритные никель-кадмиевые аккумуляторы используются в различной аппаратуре как замена стандартного гальванического элемента, особенно если аппаратура потребляет большой ток. Так как внутреннее сопротивление никель-кадмиевого аккумулятора на один-два порядка ниже, чем у обычных марганцево-цинковых и марганцево-воздушных батарей, мощность выдаётся стабильнее и без перегрева.

Никель-кадмиевые аккумуляторы применяются на электрокарах (как тяговые), трамваях и троллейбусах (для питания цепей управления), речных и морских судах. Широко применяются в авиации в качестве бортовых аккумуляторных батарей самолётов и вертолётов. Используются как источники питания для автономных шуруповёртов/винтовёртов и дрелей, однако здесь намечается тенденция к вытеснению их высокотоковыми батареями различных литиевых систем.

Несмотря на развитие других электрохимических систем и ужесточение экологических требований, никель-кадмиевые аккумуляторы остаются основным выбором для высоконадёжных устройств, потребляющих большую мощность, например фонарей для дайвинга.

Длительный срок хранения, относительная нетребовательность к постоянному уходу и контролю, способность стабильно работать на морозе до -40 °C и отсутствие возможности возгорания при разгерметизации в сравнении с литиевыми, малый удельный вес в сравнении со свинцовыми и дешевизна в сравнении с серебряно-цинковыми, меньшее внутренне сопротивление, большая надёжность и морозостойкость в сравнении с NiMH обуславливают по-прежнему широкое применение никель-кадмиевых аккумуляторов в военной технике, авиации и портативной радиосвязи.

Дисковые никель-кадмиевые аккумуляторы

Никель-кадмиевые аккумуляторы выпускаются также в герметичном "таблеточном" конструктиве, наподобие батареек для часов. Электроды в таком аккумуляторе — две прессованные тонкие таблетки из активной массы, сложенные в пакет с сепаратором и плоской пружиной и завальцованные в никелированный стальной корпус диаметром с монету. Используются для питания различных, в основном маломощных, нагрузок (током C/10-C/5). Допускают только небольшие зарядные токи, не более С/10, так как внутри корпуса должна успевать происходить рекомбинация выделяющихся газов. Благодаря замкнутой конструкции допускают длительный перезаряд с непрерывной рекомбинацией и выделением избыточной энергии в виде тепла. Напряжение такого аккумулятора ниже, чем у негерметичного, и мало изменяется в процессе разряда вследствие избытка активной массы катода, создаваемого с целью ускорения рекомбинации кислорода.

Дисковые аккумуляторы (как правило, в батареях по 3 шт. в общей оболочке, типоразмера аналогичного советскому Д-0,06) широко применялись в персональных компьютерах выпуска 1980–90 годов, в частности PC-286/386 и ранних 486, для питания энергонезависимой памяти настроек (CMOS NVRAM) и часов реального времени при отключенном сетевом питании. Срок службы аккумуляторов в таком режиме составлял несколько лет, после чего батарея, в большинстве случаев — впаянная в материнскую плату, подлежала замене. С развитием CMOS-технологии и уменьшением потребляемой мощности NVRAM и RTC аккумуляторы были вытеснены одноразовыми литиевыми элементами ёмкостью порядка 200 мА·ч (CR2032 и др.), устанавливаемыми в гнёзда-защёлки и легко заменяемыми пользователем, с аналогичным сроком непрерывной работы.

В СССР дисковые аккумуляторы были практически единственными доступными в широкой продаже аккумуляторами (кроме автомобильных и, позднее, NiCd размера AA на 450 мА·ч). Помимо отдельных элементов, предлагалась 9-вольтовая батарея из семи аккумуляторов Д-0,1 с разъёмом, аналогичным "Кроне", которая, однако, входила в отсек питания не у всех радиоприёмников, для которых предназначалась. Поставлялись только простейшие зарядные устройства с током С/10, заряжавшие аккумулятор или батарею примерно за 14 часов (время контролировалось пользователем).

Названиеаккумулятора Диаметр,мм Высота,мм Напряжение,В Ёмкость,А*ч Рекомендуемыйток разряда, мА Применение Д-0,03 Д-0,06 Д-0,125 Д-0,26 Д-0,55 7Д-0,125
11,6 5,5 1,2 0,03 3 фотоаппараты, слуховые аппараты
15,6 6,4 1,2 0,06 12 фотоаппараты, фотоэкспонометры, слуховые аппараты, дозиметры
20 6,6 1,2 0,125 12,5 аккумуляторные электрические фонарики[уточнить], миниатюрные радиоприёмники
25,2 9,3 1,2 0,26 26 аккумуляторные электрические фонарики, фотовспышки, калькуляторы (Б3-36)
34,6 9,8 1,2 0,55 55 прицел ночного видения 1ПН58 (блок из пяти Д-0.55С), фотовспышки, аккумуляторные электрические фонарики, калькуляторы (Б3-34)[1]
8,4 0,125 12,5 замена батарее Крона

Производители

NiCd-аккумуляторы производят множество фирм, в том числе такие крупные интернациональные компании, как GP Batteries, Samsung (под брендом Pleomax), VARTA, GAZ, Konnoc, Metabo, EMM, Advanced Battery Factory, Panasonic/Matsushita Electric Industrial, Ansmann и др. Среди отечественных производителей можно назвать НИАИ (создан на базе Центральной аккумуляторной лаборатории, 1946 г.), "Космос", ЗАО "Опытный завод НИИХИТ", ЗАО "НИИХИТ-2".

Безопасная утилизация

Плавка продуктов утилизации NiCd-аккумуляторов происходит в печах при высоких температурах, кадмий в этих условиях становится чрезвычайно летучим, и в случае, если печь не оборудована специальным улавливающим фильтром, токсичные вещества (например пары кадмия) выбрасываются во внешнюю среду, отравляя окружающие территории. Вследствие этого оборудование для утилизации — более дорогое, чем для утилизации свинцовых батарей.

См. также

Литература

  • Хрусталёв Д. А. Аккумуляторы. М: Изумруд, 2003.
  • Федотов Г. А. Электрические и электронные устройства для фотографии. Л.: Энергоатомиздат, 1984.
  • ГОСТ 15596-82. Источники тока химические. Термины и определения.
  • Описание заряда NiCd-аккумуляторов.

Примечания

  1. ↑ Под ред. акад. Ю.Д. Третьякова. Неограническая химия. Том 3. Химия переходных элементов.. — Москва: Академия, 2004. — 368 с. — ISBN 5-7695-1436-1.

wikipedia.green

Реферат Никель-кадмиевый аккумулятор

скачать

Реферат на тему:

План:

    Введение
  • 1 История изобретения
  • 2 Параметры
  • 3 Области применения
    • 3.1 Дисковые никель-кадмиевые аккумуляторы
  • 4 Производители
  • 5 Безопасная утилизация
  • ЛитератураПримечания

Введение

Никель-кадмиевые аккумуляторы

Малогабаритные дисковые никель-кадмиевые аккумуляторы Д-0,03 и зарядное устройство к ним. СССР, 1980-е годы.

Никель-ка́дмиевый аккумуля́тор (NiCd) — первичный химический источник тока, в котором анодом является гидрат закиси никеля Ni(OH)2 с графитовым порошком (около 5-8 %) , электролитом — гидроксид калия KOH плотностью 1,19-1,21 с добавкой гидроксида лития LiOH (для образования никелатов лития и увеличения ёмкости на 21-25 %), катод — гидрат закиси кадмия Cd(OH)2 или металлический кадмий Cd (в виде порошка). ЭДС никель-кадмиевого аккумулятора около 1,37 В, удельная энергия около 45 — 65 Вт·ч/кг. В зависимости от конструкции, режима работы (длительные или короткие разряды) и чистоты применяемых материалов, срок службы составляет от 100 до 9000 циклов заряда-разряда. Современные (ламельные) промышленные никель-кадмиевые батареи могут служить до 20-25 лет.

1. История изобретения

2. Параметры

  • Теоретическая энергоёмкость: 237 Вт·ч/кг.
  • Удельная энергоёмкость: 45-65 Вт·ч/кг.
  • Удельная энергоплотность: 50-150 Вт·ч/дм³.
  • Удельная мощность: 150..500 Вт/кг.
  • ЭДС = 1,37 В.
  • Рабочее напряжение = 1,35..1,0 В.
  • Нормальный ток зарядки = 0,1…1 С.
  • Саморазряд: 10 % в месяц.
  • Рабочая температура: −50…+40 °C.

В настоящее время использование никель-кадмиевых аккумуляторов сильно ограничено по экологическим соображениям, поэтому они применяются только там, где использование других систем невозможно, а именно, в устройствах, характеризующихся большими разрядными и зарядными токами. Типичный аккумулятор для летающей модели можно зарядить за полчаса, а разрядить за 5 минут. Благодаря очень низкому внутреннему сопротивлению аккумулятор не нагревается даже при зарядке большим током. Только когда аккумулятор зарядится, начинается заметный разогрев, что и используется большинством зарядных устройств как сигнал окончания зарядки. Конструктивно все никель-кадмиевые аккумуляторы оснащены прочным герметичным корпусом, который выдерживает давление внутренних газов в тяжелых условиях эксплуатации.

Цикл разряда начинается от 1,35 В и заканчивается на 1,0 В (соответственно 100 % емкости и 1 % оставшейся емкости)

Электроды никель-кадмиевых аккумуляторов изготавливаются как штамповкой из листа, так и прессованием из порошка. Прессованные электроды технологически дешевле и обладают более высокими показателями заявленной ёмкости, в связи с чем все аккумуляторы «бытового» назначения — прессованные. Однако прессованные системы подвержены так называемому «эффекту памяти». Эффект памяти проявляется, когда аккумулятор подвергают зарядке раньше, чем он реально разрядится. В электро-химической системе аккумулятора появляется «лишний» двойной электрический слой и его напряжение снижается на 0.1 В. Типичный контроллер аппарата, использующего аккумулятор, интерпретирует это снижение напряжения как разрядку батареи и сообщает, что батарея «плохая». Реального снижения энергоёмкости при этом не происходит, и хороший контроллер может обеспечить полное использование емкости аккумулятора. Тем не менее, в типичном случае, контроллер побуждает пользователя производить все новые и новые циклы зарядки. А это и приводит к тому, что пользователь своими руками, из лучших побуждений, «убивает» батарею. То есть, можно сказать, что батарея выходит из строя не столько от «эффекта памяти» прессованных электродов, сколько от «эффекта беспамятства» недорогих контроллеров.

Аккумулятор, разряжаемый и заряжаемый слабыми токами (например, в пульте дистанционного управления телевизора), быстро теряет ёмкость и пользователь считает его вышедшим из строя. Так же и аккумулятор, длительное время стоявший на подзарядке (например, в системе бесперебойного питания) потеряет ёмкость, хотя напряжение будет правильным. То есть, использовать никель-кадмиевый аккумулятор в буферном режиме нельзя. Тем не менее, один цикл глубокой разрядки и последующая зарядка полностью восстановят ёмкость аккумулятора.

При хранении NiCd аккумуляторы также теряют ёмкость, хотя и сохраняют выходное напряжение. Чтобы избежать неверной разбраковки при снятии аккумулятора с хранения, рекомендуется хранить их в разряженном виде, тогда после первой же зарядки аккумулятор будет полностью готов к использованию. NiCd батареи надо хранить в разряженном состоянии. Лучше всего подключить цепочку из диода и резистора на каждую банку, чтобы ограничить напряжение на уровне 0.5-0.7В на элемент. Это также способствует выравниванию характеристик элементов, из которых состоит батарея. После длительного хранения батареи необходимо прогнать 2-3 цикла заряд/разряд током, численно равным номинальной емкости, чтобы она вошла в рабочий режим и работала с полной отдачей.

3. Области применения

Малогабаритные никель-кадмиевые аккумуляторы используются в различной аппаратуре как замена стандартного гальванического элемента, особенно, если аппаратура потребляет большой ток. Так как внутреннее сопротивление никель-кадмиевого аккумулятора на порядок-два ниже , мощность выдается стабильнее и без перегрева.

Никель-кадмиевые аккумуляторы применяются на электрокарах, трамваях и троллейбусах (для питания цепей управления), речных и морских судах. Широко применяются в авиации в качестве бортовых аккумуляторных батарей самолётов и вертолётов. Используются как источники питания для аккумуляторных шуруповёртов, винтовёртов и дрелей.

Несмотря на развитие других электро-химических систем и ужесточение требований по экологичности, никель-кадмиевые аккумуляторы остаются безальтернативным выбором для высоконадежных решений с большой удельной мощностью, например, фонари для дайвинга.

3.1. Дисковые никель-кадмиевые аккумуляторы

В СССР для питания электронных устройств были распространены дисковые никель-кадмиевые аккумуляторы.

Названиеаккумулятора диаметрмм высотамм напряжениевольт ЁмкостьА/час Рекомендуемый ток разряда, мА Применение Д-0,03 Д-0,06 Д-0,125 Д-0,26 Д-0,55 7Д-0,125
11,6 5,5 1,2 0,3 3 фотоаппараты,слуховые аппараты
15,6 6,4 1,2 0,06 12 фотоаппараты, фотоэкспонометры,слуховые аппараты
20 6,6 1,2 0,125 12,5 аккумуляторные электрические фонарики
25,2 9,3 1,2 0,26 26 фотовспышки
34,6 9,8 1,2 0,55 55 фотовспышки
125 8,4 12,5 замена батарее Крона

4. Производители

Ni-Cd аккумуляторы производят множество фирм, в том числе крупные интернациональные фирмы, такие как: GP Batteries Int. Ltd., VARTA, GAZ, KONNOC, METABO, EMM, Advanced Battery Factory, Panasonic/Matsushita Electric Industrial, ANSMANN и другие. Среди отечественных производителей можно назвать НИАИ (создан на базе Центральной аккумуляторной Лаборатории, 1946 г.).

5. Безопасная утилизация

Плавка в печи происходит при высоких температурах, кадмий в этих условиях становится чрезвычайно летучим, и в случае, если печь не оборудована специальным улавливающим фильтром, токсичные вещества (например, пары кадмия) выбрасываются во внешнюю среду, отравляя значительные площади. Вследствие этого оборудование для утилизации является более дорогим, чем для утилизации свинцовых батарей

Литература

  • Хрусталёв Д. А. Аккумуляторы. М: Изумруд, 2003.
  • Федотов Г. А. Электрические и электронные устройства для фотографии. Л: Энергоатомиздат, 1984.
  • ГОСТ 15596-82 Источники тока химические. Термины и определения
  • http://radio-hobby.org/modules/news/article.php?storyid=717 Описание заряда NiCd аккумуляторов.

Примечания

wreferat.baza-referat.ru

Никель-кадмиевый аккумулятор — Википедия (с комментариями)

Материал из Википедии — свободной энциклопедии

Никель-ка́дмиевый аккумуля́тор (NiCd) — вторичный химический источник тока, в котором катодом является гидрат закиси никеля Ni(OH)2 с графитовым порошком (около 5–8%), электролитом — гидроксид калия KOH плотностью 1,19–1,21 с добавкой гидроксида лития LiOH (для образования никелатов лития и увеличения ёмкости на 21–25%), анодом — гидрат закиси кадмия Cd(OH)2 или металлический кадмий Cd (в виде порошка). ЭДС никель-кадмиевого аккумулятора — около 1,37 В, удельная энергия — порядка 45–65 Вт·ч/кг. В зависимости от конструкции, режима работы (длительные или короткие разряды) и чистоты применяемых материалов, срок службы составляет от 100 до 900 циклов заряда-разряда. Современные (ламельные) промышленные никель-кадмиевые батареи могут служить до 20–25 лет. Никель-кадмиевые аккумуляторы (NiCd) наряду с Никель-Солевыми аккумуляторами могут храниться разряженными, в отличие от никель-металл-гидридных (NiMH) и литий-ионных аккумуляторов (Li-ion), которые нужно хранить заряженными.

История изобретения

В 1899 году Вальдмар Юнгнер (Waldmar Jungner) из Швеции изобрёл никель-кадмиевый аккумулятор, в котором в качестве положительного электрода использовался никель, а в качестве отрицательного — кадмий. Двумя годами позже Эдисон (Edison) предложил альтернативную конструкцию, заменив кадмий железом. Из-за высокой (в сравнении с сухими или свинцово-кислотными аккумуляторами) стоимости, практическое применение никель-кадмиевых и никель-железных аккумуляторов было ограниченным.

После изобретения в 1932 году Шлехтом (Shlecht) и Акерманом (Ackermann) спрессованного анода было внедрено много усовершенствований, что привело к более высокому току нагрузки и повышенной долговечности. Хорошо известный сегодня герметичный никель-кадмиевый аккумулятор стал доступен только после изобретения Ньюманом (Neumann) полностью герметичного элемента в 1947 году.

Принцип действия

Принцип действия никель-кадмиевых аккумуляторов основан на обратимом процессе:

2NiOOH + Cd + 2h3O ↔ 2Ni(OH)2 + Cd(OH)2 E0 = 1,30 В.

Никелевый электрод представляет собой пасту гидроксида никеля, смешанную с проводящим материалом и нанесенную на стальную сетку, а кадмиевый электрод — стальную сетку с впрессованным в неё губчатым кадмием. Пространство между электродами заполнено желеобразным составом на основе влажной щелочи, который замерзает при -27°С[1]. Индивидуальные ячейки собирают в батареи, обладающие удельной энергией 20–35 Вт*ч/кг и имеющие большой ресурс — несколько тысяч зарядно-разрядных циклов.

Параметры

  • Теоретическая энергоёмкость: 237 Вт·ч/кг
  • Удельная энергоёмкость: 45–65 Вт·ч/кг
  • Удельная энергоплотность: 50–150 Вт·ч/дм³
  • Удельная мощность: 150…500 Вт/кг
  • ЭДС = 1,37 В
  • Рабочее напряжение = 1,35…1,0 В
  • Нормальный ток зарядки = 0,1…1 C, где С — ёмкость
  • Срок службы: около 100—900 циклов заряда/разряда.
  • Саморазряд: 10% в месяц
  • Рабочая температура: −50…+40 °C

В настоящее время использование никель-кадмиевых аккумуляторов сильно ограничено по экологическим соображениям, поэтому они применяются только там, где использование других систем невозможно, а именно — в устройствах, характеризующихся большими разрядными и зарядными токами. Типичный аккумулятор для летающей модели можно зарядить за полчаса, а разрядить за пять минут. Благодаря очень низкому внутреннему сопротивлению аккумулятор не нагревается даже при зарядке большим током. Только когда аккумулятор полностью зарядится, начинается заметный разогрев, что и используется большинством зарядных устройств как сигнал окончания зарядки. Конструктивно все никель-кадмиевые аккумуляторы оснащены прочным герметичным корпусом, который выдерживает внутреннее давление газов в тяжёлых условиях эксплуатации.

Цикл разряда начинается с 1,35 В и заканчивается на 1,0 В (соответственно 100% ёмкости и 1% оставшейся ёмкости)

Электроды никель-кадмиевых аккумуляторов изготавливаются как штамповкой из листа, так и прессованием из порошка. Прессованные электроды более технологичны, дешевле в производстве и обладают более высокими показателями рабочей ёмкости, в связи с чем все аккумуляторы бытового назначения имеют прессованные электроды. Однако прессованные системы подвержены так называемому «эффекту памяти». Эффект памяти проявляется, когда аккумулятор подвергают зарядке раньше, чем он реально разрядится. В электрохимической системе аккумулятора появляется «лишний» двойной электрический слой и его напряжение снижается на 0,1 В. Типичный контроллер устройства, использующего аккумулятор, интерпретирует это снижение напряжения как полный разряд батареи и сообщает, что батарея «плохая». Реального снижения энергоёмкости при этом не происходит, и хороший контроллер может обеспечить полное использование ёмкости аккумулятора. Тем не менее, в типичном случае контроллер побуждает пользователя выполнять всё новые и новые циклы зарядки. А это и приводит к тому, что пользователь своими руками, из лучших побуждений, «убивает» батарею. То есть можно сказать, что батарея выходит из строя не столько от «эффекта памяти» прессованных электродов, сколько от «эффекта беспамятства» недорогих контроллеров.

Бытовой никель-кадмиевый аккумулятор, разряжаемый и заряжаемый слабыми токами (например, в пульте дистанционного управления телевизора), быстро теряет ёмкость, и пользователь считает его вышедшим из строя. Так же и аккумулятор, длительное время стоявший на подзарядке (например, в системе бесперебойного питания) потеряет ёмкость, хотя его напряжение будет правильным. То есть использовать никель-кадмиевый аккумулятор в буферном режиме нельзя. Тем не менее, один цикл глубокой разрядки и последующая зарядка полностью восстановят ёмкость аккумулятора.

При хранении NiCd-аккумуляторы также теряют ёмкость, хотя и сохраняют выходное напряжение. Чтобы избежать неверной разбраковки при снятии аккумуляторов с хранения, рекомендуется хранить их в разряженном виде — тогда после первой же зарядки аккумуляторы будут полностью готовы к использованию. Для полной разрядки батареи и выравнивания напряжений на каждом разряжаемом элементе можно подключить цепочку из двух кремниевых диодов и резистора на каждый элемент, тем самым ограничив напряжение на уровне 1-1.1 В на элемент. При этом падение напряжения на каждом кремниевом диоде составляет 0,5–0,7 В, поэтому выбирать диоды для цепочки необходимо вручную, используя, например, мультиметр. После длительного хранения батареи необходимо провести два-три цикла заряд/разряд током, численно равным номинальной ёмкости (1C), чтобы она вошла в рабочий режим и работала с полной отдачей.

Области применения

Малогабаритные никель-кадмиевые аккумуляторы используются в различной аппаратуре как замена стандартного гальванического элемента, особенно если аппаратура потребляет большой ток. Так как внутреннее сопротивление никель-кадмиевого аккумулятора на один-два порядка ниже, чем у обычных марганцево-цинковых и марганцево-воздушных батарей, мощность выдаётся стабильнее и без перегрева.

Никель-кадмиевые аккумуляторы применяются на электрокарах (как тяговые), трамваях и троллейбусах (для питания цепей управления), речных и морских судах. Широко применяются в авиации в качестве бортовых аккумуляторных батарей самолётов и вертолётов. Используются как источники питания для автономных шуруповёртов/винтовёртов и дрелей, однако здесь намечается тенденция к вытеснению их высокотоковыми батареями различных литиевых систем.

Несмотря на развитие других электрохимических систем и ужесточение экологических требований, никель-кадмиевые аккумуляторы остаются основным выбором для высоконадёжных устройств, потребляющих большую мощность, например фонарей для дайвинга.

Длительный срок хранения, относительная нетребовательность к постоянному уходу и контролю, способность стабильно работать на морозе до -40 °C и отсутствие возможности возгорания при разгерметизации в сравнении с литиевыми, малый удельный вес в сравнении со свинцовыми и дешевизна в сравнении с серебряно-цинковыми, меньшее внутренне сопротивление, большая надёжность и морозостойкость в сравнении с NiMH обуславливают по-прежнему широкое применение никель-кадмиевых аккумуляторов в военной технике, авиации и портативной радиосвязи.

Дисковые никель-кадмиевые аккумуляторы

Никель-кадмиевые аккумуляторы выпускаются также в герметичном "таблеточном" конструктиве, наподобие батареек для часов. Электроды в таком аккумуляторе — две прессованные тонкие таблетки из активной массы, сложенные в пакет с сепаратором и плоской пружиной и завальцованные в никелированный стальной корпус диаметром с монету. Используются для питания различных, в основном маломощных, нагрузок (током C/10-C/5). Допускают только небольшие зарядные токи, не более С/10, так как внутри корпуса должна успевать происходить рекомбинация выделяющихся газов. Благодаря замкнутой конструкции допускают длительный перезаряд с непрерывной рекомбинацией и выделением избыточной энергии в виде тепла. Напряжение такого аккумулятора ниже, чем у негерметичного, и мало изменяется в процессе разряда вследствие избытка активной массы катода, создаваемого с целью ускорения рекомбинации кислорода.

Дисковые аккумуляторы (как правило, в батареях по 3 шт. в общей оболочке, типоразмера аналогичного советскому Д-0,06) широко применялись в персональных компьютерах выпуска 1980–90 годов, в частности PC-286/386 и ранних 486, для питания энергонезависимой памяти настроек (CMOS NVRAM) и часов реального времени при отключенном сетевом питании. Срок службы аккумуляторов в таком режиме составлял несколько лет, после чего батарея, в большинстве случаев — впаянная в материнскую плату, подлежала замене. С развитием CMOS-технологии и уменьшением потребляемой мощности NVRAM и RTC аккумуляторы были вытеснены одноразовыми литиевыми элементами ёмкостью порядка 200 мА·ч (CR2032 и др.), устанавливаемыми в гнёзда-защёлки и легко заменяемыми пользователем, с аналогичным сроком непрерывной работы.

В СССР дисковые аккумуляторы были практически единственными доступными в широкой продаже аккумуляторами (кроме автомобильных и, позднее, NiCd размера AA на 450 мА·ч). Помимо отдельных элементов, предлагалась 9-вольтовая батарея из семи аккумуляторов Д-0,1 с разъёмом, аналогичным "Кроне", которая, однако, входила в отсек питания не у всех радиоприёмников, для которых предназначалась. Поставлялись только простейшие зарядные устройства с током С/10, заряжавшие аккумулятор или батарею примерно за 14 часов (время контролировалось пользователем).

Названиеаккумулятора Диаметр,мм Высота,мм Напряжение,В Ёмкость,А*ч Рекомендуемыйток разряда, мА Применение Д-0,03 Д-0,06 Д-0,125 Д-0,26 Д-0,55 7Д-0,125
11,6 5,5 1,2 0,03 3 фотоаппараты, слуховые аппараты
15,6 6,4 1,2 0,06 12 фотоаппараты, фотоэкспонометры, слуховые аппараты, дозиметры
20 6,6 1,2 0,125 12,5 аккумуляторные электрические фонарики[уточнить], миниатюрные радиоприёмники
25,2 9,3 1,2 0,26 26 аккумуляторные электрические фонарики, фотовспышки, калькуляторы (Б3-36)
34,6 9,8 1,2 0,55 55 фотовспышки, аккумуляторные электрические фонарики, калькуляторы (Б3-34)[ic.pics.livejournal.com/ramlamyammambam/4839059/11186/11186_original.png]
8,4 0,125 12,5 замена батарее Крона

Производители

NiCd-аккумуляторы производят множество фирм, в том числе такие крупные интернациональные компании, как GP Batteries, Samsung (под брендом Pleomax), VARTA, GAZ, Konnoc, Metabo, EMM, Advanced Battery Factory, Panasonic/Matsushita Electric Industrial, Ansmann и др. Среди отечественных производителей можно назвать НИАИ (создан на базе Центральной аккумуляторной лаборатории, 1946 г.), "Космос", ЗАО "Опытный завод НИИХИТ", ЗАО "НИИХИТ-2".

Безопасная утилизация

Плавка продуктов утилизации NiCd-аккумуляторов происходит в печах при высоких температурах, кадмий в этих условиях становится чрезвычайно летучим, и в случае, если печь не оборудована специальным улавливающим фильтром, токсичные вещества (например пары кадмия) выбрасываются во внешнюю среду, отравляя окружающие территории. Вследствие этого оборудование для утилизации — более дорогое, чем для утилизации свинцовых батарей.

См. также

Напишите отзыв о статье "Никель-кадмиевый аккумулятор"

Литература

  • Хрусталёв Д. А. Аккумуляторы. М: Изумруд, 2003.
  • Федотов Г. А. Электрические и электронные устройства для фотографии. Л.: Энергоатомиздат, 1984.
  • [protect.gost.ru/document.aspx?control=7&id=146532 ГОСТ 15596-82]. Источники тока химические. Термины и определения.
  • [radio-hobby.org/modules/news/article.php?storyid=717 Описание заряда NiCd-аккумуляторов].

Примечания

  1. ↑ Под ред. акад. Ю.Д. Третьякова. Неограническая химия. Том 3. Химия переходных элементов.. — Москва: Академия, 2004. — 368 с. — ISBN 5-7695-1436-1.

Отрывок, характеризующий Никель-кадмиевый аккумулятор

– Мы сейчас очистим вам. – И Тимохин, еще не одетый, побежал очищать. – Князь хочет. – Какой? Наш князь? – заговорили голоса, и все заторопились так, что насилу князь Андрей успел их успокоить. Он придумал лучше облиться в сарае. «Мясо, тело, chair a canon [пушечное мясо]! – думал он, глядя и на свое голое тело, и вздрагивая не столько от холода, сколько от самому ему непонятного отвращения и ужаса при виде этого огромного количества тел, полоскавшихся в грязном пруде. 7 го августа князь Багратион в своей стоянке Михайловке на Смоленской дороге писал следующее: «Милостивый государь граф Алексей Андреевич. (Он писал Аракчееву, но знал, что письмо его будет прочтено государем, и потому, насколько он был к тому способен, обдумывал каждое свое слово.) Я думаю, что министр уже рапортовал об оставлении неприятелю Смоленска. Больно, грустно, и вся армия в отчаянии, что самое важное место понапрасну бросили. Я, с моей стороны, просил лично его убедительнейшим образом, наконец и писал; но ничто его не согласило. Я клянусь вам моею честью, что Наполеон был в таком мешке, как никогда, и он бы мог потерять половину армии, но не взять Смоленска. Войска наши так дрались и так дерутся, как никогда. Я удержал с 15 тысячами более 35 ти часов и бил их; но он не хотел остаться и 14 ти часов. Это стыдно, и пятно армии нашей; а ему самому, мне кажется, и жить на свете не должно. Ежели он доносит, что потеря велика, – неправда; может быть, около 4 тысяч, не более, но и того нет. Хотя бы и десять, как быть, война! Но зато неприятель потерял бездну… Что стоило еще оставаться два дни? По крайней мере, они бы сами ушли; ибо не имели воды напоить людей и лошадей. Он дал слово мне, что не отступит, но вдруг прислал диспозицию, что он в ночь уходит. Таким образом воевать не можно, и мы можем неприятеля скоро привести в Москву… Слух носится, что вы думаете о мире. Чтобы помириться, боже сохрани! После всех пожертвований и после таких сумасбродных отступлений – мириться: вы поставите всю Россию против себя, и всякий из нас за стыд поставит носить мундир. Ежели уже так пошло – надо драться, пока Россия может и пока люди на ногах… Надо командовать одному, а не двум. Ваш министр, может, хороший по министерству; но генерал не то что плохой, но дрянной, и ему отдали судьбу всего нашего Отечества… Я, право, с ума схожу от досады; простите мне, что дерзко пишу. Видно, тот не любит государя и желает гибели нам всем, кто советует заключить мир и командовать армиею министру. Итак, я пишу вам правду: готовьте ополчение. Ибо министр самым мастерским образом ведет в столицу за собою гостя. Большое подозрение подает всей армии господин флигель адъютант Вольцоген. Он, говорят, более Наполеона, нежели наш, и он советует все министру. Я не токмо учтив против него, но повинуюсь, как капрал, хотя и старее его. Это больно; но, любя моего благодетеля и государя, – повинуюсь. Только жаль государя, что вверяет таким славную армию. Вообразите, что нашею ретирадою мы потеряли людей от усталости и в госпиталях более 15 тысяч; а ежели бы наступали, того бы не было. Скажите ради бога, что наша Россия – мать наша – скажет, что так страшимся и за что такое доброе и усердное Отечество отдаем сволочам и вселяем в каждого подданного ненависть и посрамление. Чего трусить и кого бояться?. Я не виноват, что министр нерешим, трус, бестолков, медлителен и все имеет худые качества. Вся армия плачет совершенно и ругают его насмерть…»

В числе бесчисленных подразделений, которые можно сделать в явлениях жизни, можно подразделить их все на такие, в которых преобладает содержание, другие – в которых преобладает форма. К числу таковых, в противоположность деревенской, земской, губернской, даже московской жизни, можно отнести жизнь петербургскую, в особенности салонную. Эта жизнь неизменна. С 1805 года мы мирились и ссорились с Бонапартом, мы делали конституции и разделывали их, а салон Анны Павловны и салон Элен были точно такие же, какие они были один семь лет, другой пять лет тому назад. Точно так же у Анны Павловны говорили с недоумением об успехах Бонапарта и видели, как в его успехах, так и в потакании ему европейских государей, злостный заговор, имеющий единственной целью неприятность и беспокойство того придворного кружка, которого представительницей была Анна Павловна. Точно так же у Элен, которую сам Румянцев удостоивал своим посещением и считал замечательно умной женщиной, точно так же как в 1808, так и в 1812 году с восторгом говорили о великой нации и великом человеке и с сожалением смотрели на разрыв с Францией, который, по мнению людей, собиравшихся в салоне Элен, должен был кончиться миром. В последнее время, после приезда государя из армии, произошло некоторое волнение в этих противоположных кружках салонах и произведены были некоторые демонстрации друг против друга, но направление кружков осталось то же. В кружок Анны Павловны принимались из французов только закоренелые легитимисты, и здесь выражалась патриотическая мысль о том, что не надо ездить во французский театр и что содержание труппы стоит столько же, сколько содержание целого корпуса. За военными событиями следилось жадно, и распускались самые выгодные для нашей армии слухи. В кружке Элен, румянцевском, французском, опровергались слухи о жестокости врага и войны и обсуживались все попытки Наполеона к примирению. В этом кружке упрекали тех, кто присоветывал слишком поспешные распоряжения о том, чтобы приготавливаться к отъезду в Казань придворным и женским учебным заведениям, находящимся под покровительством императрицы матери. Вообще все дело войны представлялось в салоне Элен пустыми демонстрациями, которые весьма скоро кончатся миром, и царствовало мнение Билибина, бывшего теперь в Петербурге и домашним у Элен (всякий умный человек должен был быть у нее), что не порох, а те, кто его выдумали, решат дело. В этом кружке иронически и весьма умно, хотя весьма осторожно, осмеивали московский восторг, известие о котором прибыло вместе с государем в Петербург. В кружке Анны Павловны, напротив, восхищались этими восторгами и говорили о них, как говорит Плутарх о древних. Князь Василий, занимавший все те же важные должности, составлял звено соединения между двумя кружками. Он ездил к ma bonne amie [своему достойному другу] Анне Павловне и ездил dans le salon diplomatique de ma fille [в дипломатический салон своей дочери] и часто, при беспрестанных переездах из одного лагеря в другой, путался и говорил у Анны Павловны то, что надо было говорить у Элен, и наоборот. Вскоре после приезда государя князь Василий разговорился у Анны Павловны о делах войны, жестоко осуждая Барклая де Толли и находясь в нерешительности, кого бы назначить главнокомандующим. Один из гостей, известный под именем un homme de beaucoup de merite [человек с большими достоинствами], рассказав о том, что он видел нынче выбранного начальником петербургского ополчения Кутузова, заседающего в казенной палате для приема ратников, позволил себе осторожно выразить предположение о том, что Кутузов был бы тот человек, который удовлетворил бы всем требованиям. Анна Павловна грустно улыбнулась и заметила, что Кутузов, кроме неприятностей, ничего не дал государю. – Я говорил и говорил в Дворянском собрании, – перебил князь Василий, – но меня не послушали. Я говорил, что избрание его в начальники ополчения не понравится государю. Они меня не послушали. – Все какая то мания фрондировать, – продолжал он. – И пред кем? И все оттого, что мы хотим обезьянничать глупым московским восторгам, – сказал князь Василий, спутавшись на минуту и забыв то, что у Элен надо было подсмеиваться над московскими восторгами, а у Анны Павловны восхищаться ими. Но он тотчас же поправился. – Ну прилично ли графу Кутузову, самому старому генералу в России, заседать в палате, et il en restera pour sa peine! [хлопоты его пропадут даром!] Разве возможно назначить главнокомандующим человека, который не может верхом сесть, засыпает на совете, человека самых дурных нравов! Хорошо он себя зарекомендовал в Букарещте! Я уже не говорю о его качествах как генерала, но разве можно в такую минуту назначать человека дряхлого и слепого, просто слепого? Хорош будет генерал слепой! Он ничего не видит. В жмурки играть… ровно ничего не видит! Никто не возражал на это. 24 го июля это было совершенно справедливо. Но 29 июля Кутузову пожаловано княжеское достоинство. Княжеское достоинство могло означать и то, что от него хотели отделаться, – и потому суждение князя Василья продолжало быть справедливо, хотя он и не торопился ого высказывать теперь. Но 8 августа был собран комитет из генерал фельдмаршала Салтыкова, Аракчеева, Вязьмитинова, Лопухина и Кочубея для обсуждения дел войны. Комитет решил, что неудачи происходили от разноначалий, и, несмотря на то, что лица, составлявшие комитет, знали нерасположение государя к Кутузову, комитет, после короткого совещания, предложил назначить Кутузова главнокомандующим. И в тот же день Кутузов был назначен полномочным главнокомандующим армий и всего края, занимаемого войсками. 9 го августа князь Василий встретился опять у Анны Павловны с l'homme de beaucoup de merite [человеком с большими достоинствами]. L'homme de beaucoup de merite ухаживал за Анной Павловной по случаю желания назначения попечителем женского учебного заведения императрицы Марии Федоровны. Князь Василий вошел в комнату с видом счастливого победителя, человека, достигшего цели своих желаний. – Eh bien, vous savez la grande nouvelle? Le prince Koutouzoff est marechal. [Ну с, вы знаете великую новость? Кутузов – фельдмаршал.] Все разногласия кончены. Я так счастлив, так рад! – говорил князь Василий. – Enfin voila un homme, [Наконец, вот это человек.] – проговорил он, значительно и строго оглядывая всех находившихся в гостиной. L'homme de beaucoup de merite, несмотря на свое желание получить место, не мог удержаться, чтобы не напомнить князю Василью его прежнее суждение. (Это было неучтиво и перед князем Василием в гостиной Анны Павловны, и перед Анной Павловной, которая так же радостно приняла эту весть; но он не мог удержаться.) – Mais on dit qu'il est aveugle, mon prince? [Но говорят, он слеп?] – сказал он, напоминая князю Василью его же слова. – Allez donc, il y voit assez, [Э, вздор, он достаточно видит, поверьте.] – сказал князь Василий своим басистым, быстрым голосом с покашливанием, тем голосом и с покашливанием, которым он разрешал все трудности. – Allez, il y voit assez, – повторил он. – И чему я рад, – продолжал он, – это то, что государь дал ему полную власть над всеми армиями, над всем краем, – власть, которой никогда не было ни у какого главнокомандующего. Это другой самодержец, – заключил он с победоносной улыбкой. – Дай бог, дай бог, – сказала Анна Павловна. L'homme de beaucoup de merite, еще новичок в придворном обществе, желая польстить Анне Павловне, выгораживая ее прежнее мнение из этого суждения, сказал. – Говорят, что государь неохотно передал эту власть Кутузову. On dit qu'il rougit comme une demoiselle a laquelle on lirait Joconde, en lui disant: «Le souverain et la patrie vous decernent cet honneur». [Говорят, что он покраснел, как барышня, которой бы прочли Жоконду, в то время как говорил ему: «Государь и отечество награждают вас этой честью».] – Peut etre que la c?ur n'etait pas de la partie, [Может быть, сердце не вполне участвовало,] – сказала Анна Павловна. – О нет, нет, – горячо заступился князь Василий. Теперь уже он не мог никому уступить Кутузова. По мнению князя Василья, не только Кутузов был сам хорош, но и все обожали его. – Нет, это не может быть, потому что государь так умел прежде ценить его, – сказал он. – Дай бог только, чтобы князь Кутузов, – сказала Анпа Павловна, – взял действительную власть и не позволял бы никому вставлять себе палки в колеса – des batons dans les roues. Князь Василий тотчас понял, кто был этот никому. Он шепотом сказал: – Я верно знаю, что Кутузов, как непременное условие, выговорил, чтобы наследник цесаревич не был при армии: Vous savez ce qu'il a dit a l'Empereur? [Вы знаете, что он сказал государю?] – И князь Василий повторил слова, будто бы сказанные Кутузовым государю: «Я не могу наказать его, ежели он сделает дурно, и наградить, ежели он сделает хорошо». О! это умнейший человек, князь Кутузов, et quel caractere. Oh je le connais de longue date. [и какой характер. О, я его давно знаю.] – Говорят даже, – сказал l'homme de beaucoup de merite, не имевший еще придворного такта, – что светлейший непременным условием поставил, чтобы сам государь не приезжал к армии. Как только он сказал это, в одно мгновение князь Василий и Анна Павловна отвернулись от него и грустно, со вздохом о его наивности, посмотрели друг на друга.

В то время как это происходило в Петербурге, французы уже прошли Смоленск и все ближе и ближе подвигались к Москве. Историк Наполеона Тьер, так же, как и другие историки Наполеона, говорит, стараясь оправдать своего героя, что Наполеон был привлечен к стенам Москвы невольно. Он прав, как и правы все историки, ищущие объяснения событий исторических в воле одного человека; он прав так же, как и русские историки, утверждающие, что Наполеон был привлечен к Москве искусством русских полководцев. Здесь, кроме закона ретроспективности (возвратности), представляющего все прошедшее приготовлением к совершившемуся факту, есть еще взаимность, путающая все дело. Хороший игрок, проигравший в шахматы, искренно убежден, что его проигрыш произошел от его ошибки, и он отыскивает эту ошибку в начале своей игры, но забывает, что в каждом его шаге, в продолжение всей игры, были такие же ошибки, что ни один его ход не был совершенен. Ошибка, на которую он обращает внимание, заметна ему только потому, что противник воспользовался ею. Насколько же сложнее этого игра войны, происходящая в известных условиях времени, и где не одна воля руководит безжизненными машинами, а где все вытекает из бесчисленного столкновения различных произволов?

wiki-org.ru

Никель-кадмиевый аккумулятор - Википедия

Никель-кадмиевые аккумуляторы Малогабаритные дисковые никель-кадмиевые аккумуляторы Д-0,03 и зарядное устройство к ним. СССР, 1980-е годы. Малогабаритные дисковые никель-кадмиевые аккумуляторы Д-0,26, Д-0,06 и зарядное устройство к аккумулятору Д-0,06. Авиационная бортовая никель-кадмиевая аккумуляторная батарея 20НКБН-25-У3

Никель-ка́дмиевый аккумуля́тор (NiCd) — вторичный химический источник тока, в котором катодом является гидрат закиси никеля Ni(OH)2 с графитовым порошком (около 5–8%), электролитом — гидроксид калия KOH плотностью 1,19–1,21 с добавкой гидроксида лития LiOH (для образования никелатов лития и увеличения ёмкости на 21–25%), анодом — гидрат закиси кадмия Cd(OH)2 или металлический кадмий Cd (в виде порошка). ЭДС никель-кадмиевого аккумулятора — около 1,37 В, удельная энергия — порядка 45–65 Вт·ч/кг. В зависимости от конструкции, режима работы (длительные или короткие разряды) и чистоты применяемых материалов, срок службы составляет от 100 до 900 циклов заряда-разряда. Современные (ламельные) промышленные никель-кадмиевые батареи могут служить до 20–25 лет. Никель-кадмиевые аккумуляторы (NiCd) наряду с Никель-Солевыми аккумуляторами могут храниться разряженными, в отличие от никель-металл-гидридных (NiMH) и литий-ионных аккумуляторов (Li-ion), которые нужно хранить заряженными.

История изобретения[ | ]

В 1899 году Вальдмар Юнгнер (Waldmar Jungner) из Швеции изобрёл никель-кадмиевый аккумулятор, в котором в качестве положительного электрода использовался никель, а в качестве отрицательного — кадмий. Двумя годами позже Эдисон (Edison) предложил альтернативную конструкцию, заменив кадмий железом. Из-за высокой (в сравнении с сухими или свинцово-кислотными аккумуляторами) стоимости, практическое применение никель-кадмиевых и никель-железных аккумуляторов было ограниченным.

После изобретения в 1932 году Шлехтом (Shlecht) и Акерманом (Ackermann) спрессованного анода было внедрено много усовершенствований, что привело к более высокому току нагрузки и повышенной долговечности. Хорошо известный сегодня герметичный никель-кадмиевый аккумулятор стал доступен только после изобретения Ньюманом (Neumann) полностью герметичного элемента в 1947 году.

Принцип действия[ | ]

Принцип действия никель-кадмиевых аккумуляторов основан на обратимом процессе:

2NiOOH + Cd + 2h3O ↔ 2Ni(OH)2 + Cd(OH)2 E0 = 1,30 В.

Никелевый электрод представляет собой пасту гидроксида никеля, смешанную с проводящим материалом и нанесенную на стальную сетку, а кадмиевый электрод — стальную сетку с впрессованным в неё губчатым кадмием. Пространство между электродами заполнено желеобразным составом на основе влажной щелочи, который замерзает при -27°С[1]. Индивидуальные ячейки собирают в батареи, обладающие удельной энергией 20–35 Вт*ч/кг и имеющие большой ресурс — несколько тысяч зарядно-разрядных циклов.

Параметры[ | ]

  • Теоретическая энергоёмкость: 237 Вт·ч/кг
  • Удельная энергоёмкость: 45–65 Вт·ч/кг
  • Удельная энергоплотность: 50–150 Вт·ч/дм³
  • Удельная мощность: 150…500 Вт/кг
  • ЭДС = 1,37 В
  • Рабочее напряжение = 1,35…1,0 В
  • Нормальный ток зарядки = 0,1…1 C, где С — ёмкость
  • Срок службы: около 100—900 циклов заряда/разряда.
  • Саморазряд: 10% в месяц
  • Рабочая температура: −50…+40 °C

В настоящее время использование никель-кадмиевых аккумуляторов сильно ограничено по экологическим соображениям, поэтому они применяются только там, где использование других систем невозможно, а именно — в устройствах, характеризующихся большими разрядными и зарядными токами. Типичный аккумулятор для летающей модели можно зарядить за полчаса, а разрядить за пять минут. Благодаря очень низкому внутреннему сопротивлению аккумулятор не нагревается даже при зарядке большим током. Только когда аккумулятор полностью зарядится, начинается заметный разогрев, что и используется большинством зарядных устройств как сигнал окончания зарядки. Конструктивно все никель-кадмиевые аккумуляторы оснащены прочным герметичным корпусом, который выдерживает внутреннее давление газов в тяжёлых условиях эксплуатации.

Цикл разряда начинается с 1,35 В и заканчивается на 1,0 В (соответственно 100% ёмкости и 1% оставшейся ёмкости)

Электроды никель-кадмиевых аккумуляторов изготавливаются как штамповкой из листа, так и прессованием из порошка. Прессованные электроды более технологичны, дешевле в производстве и обладают более высокими показателями рабочей ёмкости, в связи с чем все аккумуляторы бытового назначения имеют прессованные электроды. Однако прессованные системы подвержены так называемому «эффекту памяти». Эффект памяти проявляется, когда аккумулятор подвергают зарядке раньше, чем он реально разрядится. В электрохимической системе аккумулятора появляется «лишний» двойной электрический слой и его напряжение снижается на 0,1 В. Типичный контроллер устройства, использующего аккумулятор, интерпретирует это снижение напряжения как полный разряд батареи и сообщает, что батарея «плохая». Реального снижения энергоёмкости при этом не происходит, и хороший контроллер может обеспечить полное использование ёмкости аккумулятора. Тем не менее, в типичном случае контроллер побуждает пользователя выполнять всё новые и новые циклы зарядки. А это и приводит к тому, что пользователь своими руками, из лучших побуждений, «убивает» батарею. То есть можно сказать, что батарея выходит из строя не столько от «эффекта памяти» прессованных электродов, сколько от «эффекта беспамятства» недорогих контроллеров.

Бытовой никель-кадмиевый аккумулятор, разряжаемый и заряжаемый слабыми токами (например, в пульте дистанционного управления телевизора), быстро теряет ёмкость, и пользователь считает его вышедшим из строя. Так же и аккумулятор, длительное время стоявший на подзарядке (например, в системе бесперебойного питания) потеряет ёмкость, хотя его напряжение будет правильным. То есть использовать никель-кадмиевый аккумулятор в буферном режиме нельзя. Тем не менее, один цикл глубокой разрядки и последующая зарядка полностью восстановят ёмкость аккумулятора.

При хранении NiCd-аккумуляторы также теряют ёмкость, хотя и сохраняют выходное напряжение. Чтобы избежать неверной разбраковки при снятии аккумуляторов с хранения, рекомендуется хранить их в разряженном виде — тогда после первой же зарядки аккумуляторы будут полностью готовы к использованию. Для полной разрядки батареи и выравнивания напряжений на каждом разряжаемом элементе можно подключить цепочку из двух кремниевых диодов и резистора на каждый элемент, тем самым ограничив напряжение на уровне 1-1.1 В на элемент. При этом падение напряжения на каждом кремниевом диоде составляет 0,5–0,7 В, поэтому выбирать диоды для цепочки необходимо вручную, используя, например, мультиметр. После длительного хранения батареи необходимо провести два-три цикла заряд/разряд током, численно равным номинальной ёмкости (1C), чтобы она вошла в рабочий режим и работала с полной отдачей.

Области применения[ | ]

Малогабаритные никель-кадмиевые аккумуляторы используются в различной аппаратуре как замена стандартного гальванического элемента, особенно если аппаратура потребляет большой ток. Так как внутреннее сопротивление никель-кадмиевого аккумулятора на один-два порядка ниже, чем у обычных марганцево-цинковых и марганцево-воздушных батарей, мощность выдаётся стабильнее и без перегрева.

Никель-кадмиевые аккумуляторы применяются на электрокарах (как тяговые), трамваях и троллейбусах (для питания цепей управления), речных и морских судах. Широко применяются в авиации в качестве бортовых аккумуляторных батарей самолётов и вертолётов. Используются как источники питания для автономных шуруповёртов/винтовёртов и дрелей, однако здесь намечается тенденция к вытеснению их высокотоковыми батареями различных литиевых систем.

Несмотря на развитие других электрохимических систем и ужесточение экологических требований, никель-кадмиевые аккумуляторы остаются основным выбором для высоконадёжных устройств, потребляющих большую мощность, например фонарей для дайвинга.

Длительный срок хранения, относительная нетребовательность к постоянному уходу и контролю, способность стабильно работать на морозе до -40 °C и отсутствие возможности возгорания при разгерметизации в сравнении с литиевыми, малый удельный вес в сравнении со свинцовыми и дешевизна в сравнении с серебряно-цинковыми, меньшее внутренне сопротивление, большая надёжность и морозостойкость в сравнении с NiMH обуславливают по-прежнему широкое применение никель-кадмиевых аккумуляторов в военной технике, авиации и портативной радиосвязи.

Дисковые никель-кадмиевые аккумуляторы[ | ]

Никель-кадмиевые аккумуляторы выпускаются также в герметичном "таблеточном" конструктиве, наподобие батареек для часов. Электроды в таком аккумуляторе — две прессованные тонкие таблетки из активной массы, сложенные в пакет с сепаратором и плоской пружиной и завальцованные в никелированный стальной корпус диаметром с монету. Используются для питания различных, в основном маломощных, нагрузок (током C/10-C/5). Допускают только небольшие зарядные токи, не более С/10, так как внутри корпуса должна успевать происходить рекомбинация выделяющихся газов. Благодаря замкнутой конструкции допускают длительный перезаряд с непрерывной рекомбинацией и выделением избыточной энергии в виде тепла. Напряжение такого аккумулятора ниже, чем у негерметичного, и мало изменяется в процессе разряда вследствие избытка активной массы катода, создаваемого с целью ускорения рекомбинации кислорода.

Дисковые аккумуляторы (как правило, в батареях по 3 шт. в общей оболочке, типоразмера аналогичного советскому Д-0,06) широко применялись в персональных компьютерах выпуска 1980–90 годов, в частности PC-286/386 и ранних 486, для питания энергонезависимой памяти настроек (CMOS NVRAM) и часов реального времени при отключенном сетевом питании. Срок службы аккумуляторов в таком режиме составлял несколько лет, после чего батарея, в большинстве случаев — впаянная в материнскую плату, подлежала замене. С развитием CMOS-технологии и уменьшением потребляемой мощности NVRAM и RTC аккумуляторы были вытеснены одноразовыми литиевыми элементами ёмкостью порядка 200 мА·ч (CR2032 и др.), устанавливаемыми в гнёзда-защёлки и легко заменяемыми пользователем, с аналогичным сроком непрерывной работы.

В СССР дисковые аккумуляторы были практически единственными доступными в широкой продаже аккумуляторами (кроме автомобильных и, позднее, NiCd размера AA на 450 мА·ч). Помимо отдельных элементов, предлагалась 9-вольтовая батарея из семи аккумуляторов Д-0,1 с разъёмом, аналогичным "Кроне", которая, однако, входила в отсек питания не у всех радиоприёмников, для которых предназначалась. Поставлялись только простейшие зарядные устройства с током С/10, заряжавшие аккумулятор или батарею примерно за 14 часов (время контролировалось пользователем).

Названиеаккумулятора Диаметр,мм Высота,мм Напряжение,В Ёмкость,А*ч Рекомендуемыйток разряда, мА Применение Д-0,03 Д-0,06 Д-0,125 Д-0,26 Д-0,55 7Д-0,125
11,6 5,5 1,2 0,03 3 фотоаппараты,слуховые аппараты
15,6 6,4 1,2 0,06 12 фотоаппараты, фотоэкспонометры,слуховые аппараты, дозиметры
20 6,6 1,2 0,125 12,5 аккумуляторные электрические фонарики[уточнить], миниатюрные радиоприёмники
25,2 9,3 1,2 0,26 26 аккумуляторные электрические фонарики, фотовспышки, калькуляторы (Б3-36)
34,6 9,8 1,2 0,55 55 фотовспышки, аккумуляторные электрические фонарики, калькуляторы (Б3-34)[1]
8,4 0,125 12,5 замена батарее Крона

Производители[ | ]

NiCd-аккумуляторы производят множество фирм, в том числе такие крупные интернациональные компании, как GP Batteries, Samsung (под брендом Pleomax), VARTA, GAZ, Konnoc, Metabo, EMM, Advanced Battery Factory, Panasonic/Matsushita Electric Industrial, Ansmann и др. Среди отечественных производителей можно назвать НИАИ (создан на базе Центральной аккумуляторной лаборатории, 1946 г.), "Космос", ЗАО "Опытный завод НИИХИТ", ЗАО "НИИХИТ-2".

Безопасная утилизация[ | ]

Плавка продуктов утилизации NiCd-аккумуляторов происходит в печах при высоких температурах, кадмий в этих условиях становится чрезвычайно летучим, и в случае, если печь не оборудована специальным улавливающим фильтром, токсичные вещества (например пары кадмия) выбрасываются во внешнюю среду, отравляя окружающие территории. Вследствие этого оборудование для утилизации — более дорогое, чем для утилизации свинцовых батарей.

См. также[ | ]

Литература[ | ]

  • Хрусталёв Д. А. Аккумуляторы. М: Изумруд, 2003.
  • Федотов Г. А. Электрические и электронные устройства для фотографии. Л.: Энергоатомиздат, 1984.
  • ГОСТ 15596-82. Источники тока химические. Термины и определения.
  • Описание заряда NiCd-аккумуляторов.

Примечания[ | ]

  1. ↑ Под ред. акад. Ю.Д. Третьякова. Неограническая химия. Том 3. Химия переходных элементов.. — Москва: Академия, 2004. — 368 с. — ISBN 5-7695-1436-1.

encyclopaedia.bid

Аккумуляторы никель-кадмиевые - Энциклопедия по машиностроению XXL

Аккумуляторы никель-кадмиевые призматические. Разработка ГОСТ. (МЭК 622-88). Прямое  [c.137]

Наиболее часто применяемые щелочные аккумуляторы — никель-кадмиевые (НК), никель-железные (НЖ) и серебряно-цинковые (СЦ).  [c.24]

Технические и экономические показатели электромобилей зависят, в первую очередь, от свойств их электрохимических источников энергии — аккумуляторов или топливных элементов. Но на сегодня вес на 1 кВт мош ности (при работе в течение пяти часов) для свинцовых, железо-нике левых, никель-кадмиевых аккумуляторов составляет примерно 250 кг/кВт, серебряно-цинковых и разрабатываемых воздушно-цинковых аккумуляторов — 35-55 кг/кВт, топливных элементов на кислороде и водороде — 20-25 кг/кВт, на воздухе и водороде — 30-35 кг/кВт, на метаноле и воздухе — 70-80 кг/кВт.  [c.397]

При изготовлении щелочных никель-железного и никель-кадмиевого аккумуляторов выполняются следующие операции а) приготовление активной массы для положительного электрода б) приготовление массы для отрицательного электрода в) изготовление электродов г) сборка аккумуляторов.  [c.110]

Напряжение разомкнутой цепи — напряжение между выводами аккумулятора при разомкнутой внешней цепи. Оно зависит от электрохимической системы и равно для никель-кадмиевого аккумулятора 1,30— 1.34, никель-железного 1,37—1,41, серебряно-цинкового 1,60—1,86, кислотного 2,12 В.  [c.6]

Саморазряд никель-кадмиевых аккумуляторов в первый месяц хранения равен 10—15 % емкости, а в дальнейшем потеря емкости незначительна — 2—3 % в месяц при +20 С. При температуре ниже —5°С саморазряд очень мал. Никель-железные аккумуляторы теряют за месяц 7% емкости при температуре от —5 до +10°С 100% емкости— при температуре +40 °С 40—60 % емкости — при температуре +20 °С. Никель-железные аккумуляторы при хранении практически через 3 мес полностью теряют емкость, но саморазряд при температурах ниже —5 °С очень мал. Саморазряд серебряно-цинкового аккумулятора составляет 2—4 % в месяц при +20 °С.  [c.6]

Таблица 1.9. Основные технические данные ламельных никель-кадмиевых и никель-железных аккумуляторов и АБ Таблица 1.9. Основные технические данные ламельных <a href="/info/267043">никель-кадмиевых</a> и никель-железных аккумуляторов и АБ
Таблица 2.5. Режимы приведения в рабочее состояние и заряд при эксплуатации некоторых формированных никель-кадмиевых аккумуляторов Таблица 2.5. Режимы приведения в рабочее состояние и заряд при эксплуатации некоторых формированных <a href="/info/267043">никель-кадмиевых</a> аккумуляторов
ЗАРЯД ГЕРМЕТИЧНЫХ НИКЕЛЬ-КАДМИЕВЫХ И СЕРЕБРЯНО-ЦИНКОВЫХ АККУМУЛЯТОРОВ  [c.31]

Приведение никель-кадмиевых аккумуляторов в рабочее состояние занимает время от 15 до 20 ч, в течение которого им сообщают емкость, равную (1,5-н2)Сном- Заряд одноступенчатый при постоянном токе заряда. Напряжение в конце заряда 1,48—1,53 В.  [c.31]

Ламельные никель-кадмиевые аккумуляторы по сравнению с прочими аккумуляторами обладают наибольшим сроком службы. Срок службы их сокращается, если не будут выдерживаться установленные составы электролита, его температура или номинальные режимы заряда и разряда. Например, систематические усиленные заряды, применяемые при нерегулярной эксплуатации, сокращают срок службы аккумуляторов в 1,5—2 раза. Вредное влияние усиленных режимов заряда обусловливается более интенсивным вымыванием активных масс из ламелей аккумуляторов, а также повышенной температурой электролита в результате теплового действия зарядного тока. Срок службы аккумулятора определяется, как правило, состоянием положительного электрода.  [c.278]

Аккумуляторные батареи тепловозов предназначены для питания током тяговых генераторов или стартер-генераторов при пуске дизелей, питания цепей управления и освещения при неработающем дизеле. Аккумуляторная батарея состоит из последовательно соединенных элементов, работа которых основана на способности электрической энергии преобразовываться в химическую и, наоборот, способности химической энергии преобразовываться в электрическую. На тепловозах применяют кислотные (свинцовые) и щелочные (никель-железные и никель-кадмиевые) аккумуляторы, отличающиеся друг от друга материалом пластин и составом электролита.  [c.112]

Щелочные аккумуляторы применяются двух типов никель-железные и никель-кадмиевые. Активная масса положительных пластин в этих аккумуляторах состоит из окисла никеля, смешанного для увеличения электропроводности с графитом. Эта масса помещена в тонкие железные оболочки с мелкой перфорацией. Отрицательные пластины изготовлены из губчатого железа (никель-железные аккумуляторы) или из губчатого кадмия с добавлением губчатого  [c.113]

На электротележках чаще всего применяют никель-железные и никель-кадмиевые щелочные аккумуляторы.  [c.15]

Никель-кадмиевый аккумулятор имеет много общего с никель-железным. Активный материал положительных пластин, состав электролита и особенности конструкции одни и те же для обоих типов аккумуляторов. Однако у никель-кадмиевых аккумуляторов в отличие от никель-железных отрицательные пластины заполнены смесью губчатого кадмия с губчатым железом, повышающим мелкозернистость кадмия. При заряде и разряде аккумулятора кислород из активного материала одной пластины переходит в активный материал другой.  [c.16]

Никель-кадмиевые аккумуляторы обладают более высокой отдачей, чем никель-железные. Кроме того, внутреннее сопротивление их ниже и саморазряд меньше они менее чувствительны к низкой температуре.  [c.16]

В данной системе для питания пульта при управлении по радиоканалу применяются герметичные, никель-кадмиевые аккумуляторы типа ЦНК-0,9. В условном наименовании аккумуляторов буква Ц обозначает их форму (цилиндрические), буквы НК — материал и электрическую схему (никель-кадмиевые). Число после буквенного обозначения 0,9 — номинальную емкость в ампер-часах. Аккумуляторы собраны в батарею по 10 штук,  [c.103]

Намагничивание детали может производиться в поле соленоида, в поле электромагнита, пропусканием через деталь постоянного или переменного тока большой силы (циркулярное намагничивание). Ток для намагничивания получают от батареи специальных (свинцовых или никель-кадмиевых) аккумуляторов или от трансформатора сварочного типа. Для создания достаточного магнитного поля требуется большой силы ток, доходящий до 2000—3000 а, в зависимости от поперечного сечения контролируемой детали.  [c.49]

Гораздо реже в качестве буферных химических батарей применяются серебряно-цинковые, которые имеют самую высокую удельную энергию (0,54...0,90-10 Дж/кг) по сравнению с аккумуляторами других типов, но по количеству зарядно-разрядных циклов (300...400, т.е. примерно на один месяц работы на ИСЗ) сильно уступают никель-кадмиевым батареям. Серебряно-цинковые батареи применяются в качестве буферных только в тех случаях, когда имеются большие ограничения по массе КА и по условиям работы не предвидятся частые и длительные переходы от освещенного состояния солнечной батареи к неосвещенному. В частности, они применялись на КА "Маринер IV". По заказу ВВС США проводились разработки серебряно-цинковых батарей с расчетным количеством зарядно-разрядных циклов 3500 при величине удельной энергии 1,08-10 Дж/кг и более. В основном такие батареи применяются в качестве первичных источников на ракетах-носителях.  [c.231]

К.п.д цикла - заряд-разряд аккумуляторной батареи зависит от ее типа и температуры, при которой она работает. Так, для герметичных никель-кадмиевых аккумуляторов в диапазоне рабочих температур от -20 до +50 °С К.П.Д цикла - заряд-разряд принимается равным 0,75.  [c.232]

В практике получили широкое распространение два типа аккумуляторов кислотные (свинцовые) и щелочные (железо-никелевые и никель-кадмиевые), отличающиеся друг от друга применением разных пластин и растворов (электролитов).  [c.297]

На электровозах железных дорог СССР до последнего времени применялись только свинцовые аккумуляторы с 1955 г. на некоторых электровозах устанавливаются никель-кадмиевые и железо-никелевые аккумуляторы.  [c.297]

Б. НИКЕЛЬ-КАДМИЕВЫЕ И ЖЕЛЕЗО-НИКЕЛЕВЫЕ АККУМУЛЯТОРЫ  [c.305]

Положительные пластины никель-кадмиевых аккумуляторов содержат активную массу из перекиси никеля (N 203), помещённую в тонкие железные оболочки, снабжённые очень частой перфорацией отрицательные пластины состоят из губчатого кадмия (Сс1) с прибавлением губчатого железа (Ре), также помещённых в железные оболочки с перфорацией. Отверстия в оболочках настолько малы, что зёрна активной массы не могут выпасть из пакетов и произвести короткое замыкание. В то же время через эти отверстия может поступать к активной массе электролит и выделяться образующиеся при заряде аккумулятора газы.  [c.305]

В качестве электролита для никель-кадмиевых аккумуляторов применяется раствор гидроокиси калия (КОН) в воде удельный вес электролита 1,19-1,21.  [c.305]

Электролит. В щелочных никель-кадмиевых аккумуляторах, работающих при температуре воздуха от —19 до +35° С, применяют составной калиево-литиевый электролит плотностью 1,19—1,21 г/см . Калиево-литиевый электролит состоит из раствора едкого кали с добавкой на 1 л 20 г едкого лития аккумуляторного (моногидрата лития). При температуре воздуха от —20 до —40° С применяют раствор едкого кали плотностью 1,26—1,28 г/см .  [c.229]

Система регулирования предохраняет турбину от перегрузки, регулируя расход природного газа клапаном на всасывающем патрубке газового компрессора. При увеличении скорости вращения вала турбины до 3880 об1мин на станцию управления передается предупредительный сигнал. Если на станцию прекратится подача переменного тока, то все механизмы автоматически переключаются на питание от никель-кадмиевых аккумуляторов через преобразователь постоянного тока напряжением 125 в. Питание от аккумуляторов будет продолжаться до тех пор, пока не начнет работать вспомогательный генератор мощностью 300 кет. Если генератор неисправен и нет подачи энергии извне, то установка прекратит работу. Включение станции обеспечивает аккумуляторная батарея. Два станционных щита управления установкой, один из которых питается постоянным током напряжением 125 в от аккумуляторной батареи и другой — переменным током напряжением 120 в, удовлетворяют всем требованиям защиты установки. Система управления постоянного тока используется как аварийная. Станция имеет самозащиту от аварий, так что безопасность ее работы не зависит от системы дистанционного управления и сигнализации. Управление станцией может осуществляться как непосредственно на самой станции, так и дистанционно.  [c.136]

Энергия удельная — энергия, отдаваемая аккумулятором при разряде в расчете на единицу его объема V или массы т, т. е. = или Wm=W m. Удельная энергия кислотных аккумуляторов равна 7—25, никель-кадмиевых 11—27, никель-железных 20—36, серебряноцинковых 120—130 Вт-ч/кг.  [c.6]

Никель-кадмиевые и никель-железные аккумуляторы (табл. 1.2, 1.9— 1.13) имеют много общего в конструкциях и характеристиках. Аккумуляторы обладают большим ресурсом — несколько тысяч зарядно-разрядных циклов. Никель-железные аккумуляторы большой емкости используют в тяговых батареях (они дешевле никель-кадмиевых). Эти аккумуляторы характеризуются повышенным саморазрядом и пониженными отдачами по току и энергии. Электроды никель-кадмиевых и никель-железных аккумуляторов могут быть ламельными и безламель-ными (те и другие — и положительными и отрицательными удельная емкость последних выше, чем у ламельных), трубчатыми (только отрицательными) и таблеточными (положительными и отрицательными). В зависимости от вида данные аккумуляторы промышленность выпус- кает незалитыми и залитыми электролитом.  [c.22]

Для никель-железных и никель-кадмиевых аккумуляторов, предназначенных для работы при температурах выше —15°С, используют 20— 22 %-ный раствор КОН плотностью 1190—1210 кг/м с добавкой 5— 20 г/л моногидрата лития Ь10Н, а при более низких температурах (от —30 до —40°С) 26—28 %-ный раствор КОН плотностью 1250— 1270 кг/м (в этом случае моногидрат лития не добавляют из-за снижения электрической проводимости).  [c.24]

Заряд неформированных на заводе-изготовителе никель-кадмиевых и никель-железных АБ проводят при введении их в эксплуатацию. Не залитые электролитом аккумуляторы подбирают в группы в зависимости от значения их НРЦ, после чего их заливают электролитом — 30 °С) плотностью 1190—1210 кг/м , если добавляют моногидрат лития, и плотностью 1250—1270 кг/мз без этой добавки. При НРЦ более 0,7 В проводят два-три зарядно-разрядных цикла, когда же НРЦ менее 0,7 В, делают до 5—6 циклов.  [c.30]

Заряд формированных никель-кадмиевых АБ заключается в заливке их таким же электролитом, что и для неформированных АБ, а также проведении двух зарядно-разрядных циклов. Емкость контролируют по времени разряда до напряжения на каждом аккумуляторе не ниже 1 В. Если на контрольном цикле аккумулятор отдает емкость менее номинальной, то проводят еще несколько зарядно-разрядных циклов, пока не получат номинальную емкость. Только после этого проводят окончательный заряд (табл. 2.5).  [c.31]

Рис. 246. Типичные зарядные кривые ла-мельных никель-кадмиевых аккумуляторов при температуре 20° С Рис. 246. Типичные зарядные кривые ла-мельных никель-кадмиевых аккумуляторов при температуре 20° С
Никель-кадмиевые аккумуляторы. Эти аккумуляторы по конструкции почти аналогичны никель-железным, но отличаются от последних содержанием активного материала и расположением электродов. В никель-кадмиевом аккумуляторе положительных пластин на одну больще, чем отрицательных, и в собранном блоке положительные пластины оказываются крайними. Объясняется это тем, что для правильной работы такого аккумулятора активная масса положительных пластин должна занимать больщий объем, чем отрицательных. Положительные пластины никель-кадмиевого аккумулятора несколько толще отрицательных.  [c.24]

Безламельные никель-кадмиевые аккумуляторы. Эти аккумуляторы отличаются от ламельных отсутствием перфорированных стальных коробочек. Однако принцип действия их и химические процессы, происходящие в них, те же, что в обычных никель-кадмиевых аккумуляторах.  [c.24]

Безламельные никель-кадмиевые аккумуляторы хорошо работают в качестве стартерных батарей, переносят низкие температуры, поэтому могут находиться на открытых площадках в любое время года. Основные недостатки безламельных аккумуляторов— небольшой срок службы, а также относительно высокая стоимость.  [c.25]

Саморазряд. У никель-кадмиевых аккумуляторов саморазряд очень небольшой. При хранении в заряженном состоянии такого аккумулятора он за один год теряет около 50% емкости. Железо-никелевые аккумуляторы теряют емкость значительно быстрее (приблизительно 75% емкости при двухмесячном хранении). Эти данные относятся к температуре 20° С.  [c.248]

Никель-кадмиевы е аккумуляторы ИСЗ "Tel-star" использовались в качестве источника энергии при нахождении ИСЗ в тени и функционировали более двух лет. Батарея состояла из 19 герметично выполненных элементов, что исключало потери электролита ее рабочий диапазон от -10 до +32°, напряжение разряда почти постоянное.  [c.230]

Из большого разноообразия существующих в настоящее время типов аккумуляторов рассматриваются два основных типа никель-кадмиевые и никель-водородные аккумуляторы, нашедшие наибольшее применение при освоении космического пространства (табл. 5.14).  [c.232]

Никель-кадмиевые аккумуляторы отличаются от свинцовых меньшим весом при одинаковой ёмкости, весьма незначительным саморазрядом, небольшой чувствительностью к перезаряду и недозаряду, большей прочностью, большим сроком службы и более простым обслуживанием. Недостатком никель-кадмиевых аккумуляторов является более низкие напряжение элементов (1,2 в), отдача по количеству электричества (65 — 70%) и отдача по энергии (50 — 55%).  [c.305]

На некоторых электровозах установлены железо-никелевые аккумуляторы типа ЖН-100 (железо-никелевые, ёмкость 100 а-ч). Положительные пластины железо-никелевых аккумуляторов не отличаются от положительных пластин никель-кадмиевых отрицательные же пластины вьшолнены из губчатого железа. Во время разряда аккумулятора кислород отнимается у никелевой (положите. ь-ной) пластины и присоединяется к железной (отрицательной) пластине. Во время заряда происходит обратное явление.  [c.305]

mash-xxl.info


Смотрите также